Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411286

RESUMO

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Síndromes Epilépticas , Adulto , Humanos , Epilepsia do Lobo Temporal/complicações , Fenitoína , Estudos Transversais , Síndromes Epilépticas/complicações , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Convulsões/complicações , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
2.
Hum Brain Mapp ; 43(1): 385-398, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073925

RESUMO

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.


Assuntos
Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética , Neuroimagem , Transtorno Bipolar/tratamento farmacológico , Genética , Hipocampo/efeitos dos fármacos , Humanos
3.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027543

RESUMO

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Assuntos
Transtorno Bipolar/patologia , Disfunção Cognitiva/patologia , Escolaridade , Predisposição Genética para Doença , Inteligência/fisiologia , Neuroimagem , Esquizofrenia/patologia , Transtorno Bipolar/complicações , Transtorno Bipolar/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Família , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/etiologia
4.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
5.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656586

RESUMO

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Biomarcadores , Estudos Transversais , Epilepsia/complicações , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações
6.
Mol Psychiatry ; 25(9): 2130-2143, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171211

RESUMO

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neuroimagem
7.
Brain ; 143(8): 2454-2473, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814957

RESUMO

The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.


Assuntos
Encéfalo/patologia , Síndromes Epilépticas/patologia , Substância Branca/patologia , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
8.
Brain ; 141(2): 391-408, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365066

RESUMO

Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Epilepsia/patologia , Adulto , Encéfalo/patologia , Correlação de Dados , Estudos Transversais , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Cooperação Internacional , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto
9.
Br J Psychiatry ; 213(3): 548-554, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30113288

RESUMO

BACKGROUND: Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.AimsThis study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings. METHOD: Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II. RESULTS: The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association. CONCLUSIONS: Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.Declaration of interestNone.


Assuntos
Transtorno Bipolar/fisiopatologia , Encéfalo/patologia , Imagem de Tensor de Difusão , Adulto , Anisotropia , Transtorno Bipolar/classificação , Estudos de Casos e Controles , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Núcleo Accumbens/patologia , Córtex Pré-Frontal/patologia , Escalas de Graduação Psiquiátrica , Irmãos , Substância Branca/patologia
10.
J Neurosci ; 36(14): 4056-66, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053212

RESUMO

Brain region-specific changes have been demonstrated with a variety of cognitive training interventions. The effect of cognitive training on brain subnetworks in humans, however, remains largely unknown, with studies limited to functional networks. Here, we used a well-established working memory training program and state-of-the art neuroimaging methods in 40 healthy adults (21 females, mean age 26.5 years). Near and far-transfer training effects were assessed using computerized working memory and executive function tasks. Adaptive working memory training led to improvement on (non)trained working memory tasks and generalization to tasks of reasoning and inhibition. Graph theoretical analysis of the structural (white matter) network connectivity ("connectome") revealed increased global integration within a frontoparietal attention network following adaptive working memory training compared with the nonadaptive group. Furthermore, the impact on the outcome of graph theoretical analyses of different white matter metrics to infer "connection strength" was evaluated. Increased efficiency of the frontoparietal network was best captured when using connection strengths derived from MR metrics that are thought to be more sensitive to differences in myelination (putatively indexed by the [quantitative] longitudinal relaxation rate, R1) than previously used diffusion MRI metrics (fractional anisotropy or fiber-tracking recovered streamlines). Our findings emphasize the critical role of specific microstructural markers in providing important hints toward the mechanisms underpinning training-induced plasticity that may drive working memory improvement in clinical populations. SIGNIFICANCE STATEMENT: This is the first study to explore training-induced changes in the structural connectome using a well-controlled design to examine cognitive training with up-to-date neuroimaging methods. We found changes in global integration based on white matter connectivity within a frontoparietal attention network following adaptive working memory training compared with a nonadaptive comparison group. Furthermore, the impact of different diffusion MR metrics and more specific markers of white matter on the graph theoretical findings was evaluated. An increase in network global efficiency following working memory training was best captured when connection strengths were weighted by MR relaxation rates (influenced by myelination). These results are important for the optimization of cognitive training programs for healthy individuals and people with brain disease.


Assuntos
Conectoma , Aprendizagem , Memória de Curto Prazo/fisiologia , Adulto , Algoritmos , Mapeamento Encefálico , Cognição/fisiologia , Imagem de Difusão por Ressonância Magnética , Função Executiva/fisiologia , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Humanos , Masculino , Processos Mentais/fisiologia , Bainha de Mielina/fisiologia , Rede Nervosa/fisiologia , Neuroimagem , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
11.
J Cogn Neurosci ; 29(9): 1509-1520, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28358656

RESUMO

Adaptive working memory (WM) training may lead to cognitive benefits that are associated with white matter plasticity in parietofrontal networks, but the underlying mechanisms remain poorly understood. We investigated white matter microstructural changes after adaptive WM training relative to a nonadaptive comparison group. Microstructural changes were studied in the superior longitudinal fasciculus, the main parietofrontal connection, and the cingulum bundle as a comparison pathway. MRI-based metrics were the myelin water fraction and longitudinal relaxation rate R1 from multicomponent relaxometry (captured with the mcDESPOT approach) as proxy metrics of myelin, the restricted volume fraction from the composite hindered and restricted model of diffusion as an estimate of axon morphology, and fractional anisotropy and radial diffusivity from diffusion tensor imaging. PCA was used for dimensionality reduction. Adaptive training was associated with benefits in a "WM capacity" component and increases in a microstructural component (increases in R1, restricted volume fraction, fractional anisotropy, and reduced radial diffusivity) that predominantly loaded on changes in the right dorsolateral superior longitudinal fasciculus and the left parahippocampal cingulum. In contrast, nonadaptive comparison activities were associated with the opposite pattern of reductions in WM capacity and microstructure. No group differences were observed for the myelin water fraction metric suggesting that R1 was a more sensitive "myelin" index. These results demonstrate task complexity and location-specific white matter microstructural changes that are consistent with tissue alterations underlying myelination in response to training.


Assuntos
Cognição/fisiologia , Imagem de Difusão por Ressonância Magnética , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Testes Neuropsicológicos , Aprendizagem Verbal , Adulto Jovem
12.
Neuroimage ; 130: 48-62, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26806288

RESUMO

Novel activities and experiences shape the brain's structure and organisation and, hence, our behaviour. However, evidence from structural plasticity studies remains mixed and the neural correlates of learning and practice are still poorly understood. We conducted a robustly designed study into grey matter plasticity following 2 months of working memory training. We generated a priori hypotheses regarding the location of plastic effects across three cognitive control networks (executive, anterior salience and basal ganglia networks), and compared the effects of adaptive training (n=20) with a well-matched active control group (n=20) which differed in training complexity and included extensive cognitive assessment before and after the training. Adaptive training relative to control activities resulted in a complex pattern of subtle and localised structural changes: Training was associated with increases in cortical thickness in right-lateralised executive regions, notably the right caudal middle frontal cortex, as well as increases in the volume of the left pallidum. In addition the training group showed reductions of thickness in the right insula, which were correlated with training-induced improvements in backward digit span performance. Unexpectedly, control activities were associated with reductions in thickness in the right pars triangularis. These results suggest that the direction of activity-induced plastic changes depend on the level of training complexity as well as brain location. These observations are consistent with the view that the brain responds dynamically to environmental demands by focusing resources on task relevant networks and eliminating irrelevant processing for the purpose of energy reduction.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
13.
Netw Neurosci ; 7(1): 213-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334008

RESUMO

The link between brain structural connectivity and schizotypy was explored in two healthy participant cohorts, collected at two different neuroimaging centres, comprising 140 and 115 participants, respectively. The participants completed the Schizotypal Personality Questionnaire (SPQ), through which their schizotypy scores were calculated. Diffusion-MRI data were used to perform tractography and to generate the structural brain networks of the participants. The edges of the networks were weighted with the inverse radial diffusivity. Graph theoretical metrics of the default mode, sensorimotor, visual, and auditory subnetworks were derived and their correlation coefficients with the schizotypy scores were calculated. To the best of our knowledge, this is the first time that graph theoretical measures of structural brain networks are investigated in relation to schizotypy. A positive correlation was found between the schizotypy score and the mean node degree and mean clustering coefficient of the sensorimotor and the default mode subnetworks. The nodes driving these correlations were the right postcentral gyrus, the left paracentral lobule, the right superior frontal gyrus, the left parahippocampal gyrus, and the bilateral precuneus, that is, nodes that exhibit compromised functional connectivity in schizophrenia. Implications for schizophrenia and schizotypy are discussed.

14.
Brain Commun ; 5(5): fcad229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744023

RESUMO

Genome-wide association studies have identified multiple Alzheimer's disease risk loci with small effect sizes. Polygenic risk scores, which aggregate these variants, are associated with grey matter structural changes. However, genome-wide scores do not allow mechanistic interpretations. The present study explored associations between disease pathway-specific scores and grey matter structure in younger and older adults. Data from two separate population cohorts were used as follows: the Avon Longitudinal Study of Parents and Children, mean age 19.8, and UK Biobank, mean age 64.4 (combined n = 18 689). Alzheimer's polygenic risk scores were computed using the largest genome-wide association study of clinically assessed Alzheimer's to date. Relationships between subcortical volumes and cortical thickness, pathway-specific scores and genome-wide scores were examined. Increased pathway-specific scores were associated with reduced cortical thickness in both the younger and older cohorts. For example, the reverse cholesterol transport pathway score showed evidence of association with lower left middle temporal cortex thickness in the younger Avon participants (P = 0.034; beta = -0.013, CI -0.025, -0.001) and in the older UK Biobank participants (P = 0.019; beta = -0.003, CI -0.005, -4.56 × 10-4). Pathway scores were associated with smaller subcortical volumes, such as smaller hippocampal volume, in UK Biobank older adults. There was also evidence of positive association between subcortical volumes in Avon younger adults. For example, the tau protein-binding pathway score was negatively associated with left hippocampal volume in UK Biobank (P = 8.35 × 10-05; beta = -11.392, CI -17.066, -5.718) and positively associated with hippocampal volume in the Avon study (P = 0.040; beta = 51.952, CI 2.445, 101.460). The immune response score had a distinct pattern of association, being only associated with reduced thickness in the right posterior cingulate in older and younger adults (P = 0.011; beta = -0.003, CI -0.005, -0.001 in UK Biobank; P = 0.034; beta = -0.016, CI -0.031, -0.001 in the Avon study). The immune response score was associated with smaller subcortical volumes in the older adults, but not younger adults. The disease pathway scores showed greater evidence of association with imaging phenotypes than the genome-wide score. This suggests that pathway-specific polygenic methods may allow progress towards a mechanistic understanding of structural changes linked to polygenic risk in pre-clinical Alzheimer's disease. Pathway-specific profiling could further define pathophysiology in individuals, moving towards precision medicine in Alzheimer's disease.

15.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961570

RESUMO

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

16.
Front Neurosci ; 16: 987677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532292

RESUMO

Introduction: We investigated the structural brain networks of 562 young adults in relation to polygenic risk for Alzheimer's disease, using magnetic resonance imaging (MRI) and genotype data from the Avon Longitudinal Study of Parents and Children. Methods: Diffusion MRI data were used to perform whole-brain tractography and generate structural brain networks for the whole-brain connectome, and for the default mode, limbic and visual subnetworks. The mean clustering coefficient, mean betweenness centrality, characteristic path length, global efficiency and mean nodal strength were calculated for these networks, for each participant. The connectivity of the rich-club, feeder and local connections was also calculated. Polygenic risk scores (PRS), estimating each participant's genetic risk, were calculated at genome-wide level and for nine specific disease pathways. Correlations were calculated between the PRS and (a) the graph theoretical metrics of the structural networks and (b) the rich-club, feeder and local connectivity of the whole-brain networks. Results: In the visual subnetwork, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.19, p = 1.4 × 10-3), the mean betweenness centrality was positively correlated with the plasma lipoprotein particle assembly PRS (r = 0.16, p = 5.5 × 10-3), and the mean clustering coefficient was negatively correlated with the tau-protein binding PRS (r = -0.16, p = 0.016). In the default mode network, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.14, p = 0.044). The rich-club and feeder connectivities were negatively correlated with the genome-wide PRS (r = -0.16, p = 0.035; r = -0.15, p = 0.036). Discussion: We identified small reductions in brain connectivity in young adults at risk of developing Alzheimer's disease in later life.

17.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896547

RESUMO

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Assuntos
Conectoma , Epilepsia Generalizada , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Humanos , Imunoglobulina E , Imageamento por Ressonância Magnética , Rede Nervosa
18.
Netw Neurosci ; 5(2): 477-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189374

RESUMO

Understanding how human brain microstructure influences functional connectivity is an important endeavor. In this work, magnetic resonance imaging data from 90 healthy participants were used to calculate structural connectivity matrices using the streamline count, fractional anisotropy, radial diffusivity, and a myelin measure (derived from multicomponent relaxometry) to assign connection strength. Unweighted binarized structural connectivity matrices were also constructed. Magnetoencephalography resting-state data from those participants were used to calculate functional connectivity matrices, via correlations of the Hilbert envelopes of beamformer time series in the delta, theta, alpha, and beta frequency bands. Nonnegative matrix factorization was performed to identify the components of the functional connectivity. Shortest path length and search-information analyses of the structural connectomes were used to predict functional connectivity patterns for each participant. The microstructure-informed algorithms predicted the components of the functional connectivity more accurately than they predicted the total functional connectivity. This provides a methodology to understand functional mechanisms better. The shortest path length algorithm exhibited the highest prediction accuracy. Of the weights of the structural connectivity matrices, the streamline count and the myelin measure gave the most accurate predictions, while the fractional anisotropy performed poorly. Overall, different structural metrics paint very different pictures of the structural connectome and its relationship to functional connectivity.

19.
Transl Psychiatry ; 10(1): 324, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958742

RESUMO

Rare copy number variants associated with increased risk for neurodevelopmental and psychiatric disorders (referred to as ND-CNVs) are characterized by heterogeneous phenotypes thought to share a considerable degree of overlap. Altered neural integration has often been linked to psychopathology and is a candidate marker for potential convergent mechanisms through which ND-CNVs modify risk; however, the rarity of ND-CNVs means that few studies have assessed their neural correlates. Here, we used magnetoencephalography (MEG) to investigate resting-state oscillatory connectivity in a cohort of 42 adults with ND-CNVs, including deletions or duplications at 22q11.2, 15q11.2, 15q13.3, 16p11.2, 17q12, 1q21.1, 3q29, and 2p16.3, and 42 controls. We observed decreased connectivity between occipital, temporal, and parietal areas in participants with ND-CNVs. This pattern was common across genotypes and not exclusively characteristic of 22q11.2 deletions, which were present in a third of our cohort. Furthermore, a data-driven graph theory framework enabled us to successfully distinguish participants with ND-CNVs from unaffected controls using differences in node centrality and network segregation. Together, our results point to alterations in electrophysiological connectivity as a putative common mechanism through which genetic factors confer increased risk for neurodevelopmental and psychiatric disorders.


Assuntos
Variações do Número de Cópias de DNA , Transtornos Mentais , Adulto , Estudos de Coortes , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo
20.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208365

RESUMO

Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1021 adults with epilepsy compared to 1564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy colocalized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Negative effects of age on atrophy further revealed a strong influence of connectome architecture in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided deeper insights into the macroscale features that shape the pathophysiology of common epilepsies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA