Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Phys ; 49(3): 2026-2038, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032035

RESUMO

PURPOSE: In ultrahigh dose rate radiotherapy, the FLASH effect can lead to substantially reduced healthy tissue damage without affecting tumor control. Although many studies show promising results, the underlying biological mechanisms and the relevant delivery parameters are still largely unknown. It is unclear, particularly for scanned proton therapy, how treatment plans could be optimized to maximally exploit this protective FLASH effect. MATERIALS AND METHODS: To investigate the potential of pencil beam scanned proton therapy for FLASH treatments, we present a phenomenological model, which is purely based on experimentally observed phenomena such as potential dose rate and dose thresholds, and which estimates the biologically effective dose during FLASH radiotherapy based on several parameters. We applied this model to a wide variety of patient geometries and proton treatment planning scenarios, including transmission and Bragg peak plans as well as single- and multifield plans. Moreover, we performed a sensitivity analysis to estimate the importance of each model parameter. RESULTS: Our results showed an increased plan-specific FLASH effect for transmission compared with Bragg peak plans (19.7% vs. 4.0%) and for single-field compared with multifield plans (14.7% vs. 3.7%), typically at the cost of increased integral dose compared to the clinical reference plan. Similar FLASH magnitudes were found across the different treatment sites, whereas the clinical benefits with respect to the clinical reference plan varied strongly. The sensitivity analysis revealed that the threshold dose as well as the dose per fraction strongly impacted the FLASH effect, whereas the persistence time only marginally affected FLASH. An intermediate dependence of the FLASH effect on the dose rate threshold was found. CONCLUSIONS: Our model provided a quantitative measure of the FLASH effect for various delivery and patient scenarios, supporting previous assumptions about potentially promising planning approaches for FLASH proton therapy. Positive clinical benefits compared to clinical plans were achieved using hypofractionated, single-field transmission plans. The dose threshold was found to be an important factor, which may require more investigation.


Assuntos
Terapia com Prótons , Radioterapia (Especialidade) , Radioterapia de Intensidade Modulada , Humanos , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Phys Med Biol ; 66(12)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34010818

RESUMO

Cancer radiotherapy (RT) with the irradiation at ultra-high dose rates, namely FLASH-RT, can substantially reduce radiation-induced normal tissue toxicities while maintaining tumor response. Currently, clinical FLASH-RT on deep-seated tumors can only be performed with proton beams. One way to achieve ultra-high dose rates at depth is through the use of high-energy transmission beams (TB), where the Bragg peaks (BP) fall outside the body. However, planning with TB alone does not fully leverage the degrees of freedom for dose shaping as traditional intensity modulated proton therapy (IMPT) which uses the BP of multi-energy proton beams at the tumor target. This work will develop a simultaneous dose and dose rate optimization (SDDRO) method with the joint use of TB and BP, namely SDDRO-Joint. Specifically, BP are placed inside tumor targets to improve the target dose conformality and sparse the normal-tissue dose, while TB primarily cover the tumor boundary to achieve ultra-high dose rate coverage of organs-at-risk (OAR) close to tumor targets. The sparing of OAR and other normal tissues via SDDRO-Joint is jointly by TB and BP, i.e. the FLASH sparing by TB and the dose sparing by BP. The results suggest that the addition of BP substantially increased the target dose conformality for SDDRO. Noticeably SDDRO-Joint also provided slightly higher conformal index values than the conventional IMPT method with BP alone.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Med Phys ; 47(12): 6396-6404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32910460

RESUMO

PURPOSE: To develop a method of (a) calculating the dose rate of voxels within a proton field delivered using pencil beam scanning (PBS), and (b) reporting a representative dose rate for the PBS treatment field that enables correspondence between multiple treatment modalities. This method takes into account the unique spatiotemporal delivery patterns of PBS FLASH radiotherapy. METHODS: The dose rate at each voxel of a PBS radiation field is approximately the quotient of the voxel's dose and "effective" irradiation time. Each voxel's "effective" irradiation time starts when the cumulative dose rises above a chosen threshold value, and stops when its cumulative dose reaches its total dose minus the same threshold value. The above calculation yields a distribution of dose rates for the voxels within a PBS treatment field. To report a representative dose rate for the PBS field, we propose a user-selectable parameter of pth percentile of the dose rate distribution, such that (100 - p) % of the field is above the corresponding dose rate. To demonstrate the method described above, we design FLASH transmission fields using 250 MeV protons and calculate the PBS dose rate distributions in both two-dimensional (2D) and three-dimensional (3D) models. To further evaluate the formalism, we provide an example of a clinical PBS treatment field. RESULTS: With the 2D PBS transmission field, it is demonstrated that the time to accumulate the total dose at a voxel is limited to a fraction of the delivery time of the entire field. In addition, the spatial distributions of dose and dose rate are quite different within the field. For the 10 × 10 cm2 PBS field irradiating a 3D water phantom, the prescribed dose of 10 Gy at 10 cm depth is delivered in 1.0 s. The dose rate decreases in the irradiated volume with increasing depth (until the Bragg peak) due to increase of beam spot size by Coulomb scattering. For example, 95% of the irradiated volume between 0 and 10 cm depth receive >40 Gy/s, whereas between 0-20 cm and 0-30 cm depth, 95% of the irradiated volume received >36 Gy/s and >24 Gy/s, respectively. For the clinical PBS treatment field, the scanning pattern conforms to the PTV. PBS dose rate data are presented for the PTV and adjacent normal organs. CONCLUSION: We have developed a method of calculating the dose rate distribution of a PBS proton field and have recommended nomenclature for reporting PBS treatment dose rate. We believe that standardizing the method for calculating and reporting PBS treatment dose rates, in a manner that corresponds with other treatment modalities, will advance the research and potential application of PBS FLASH radiotherapy.


Assuntos
Terapia com Prótons , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Água
4.
J Neurotrauma ; 24(4): 638-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17439347

RESUMO

Traumatic brain injury (TBI) can dramatically increase levels of intracellular calcium ([Ca(2+)](i)). One consequence of increased [Ca(2+)](i) would be altered activity and function of calcium-regulated proteins, including calcium-calmodulin-dependent protein kinase II (CaMKII), which is autophosphorylated on Thr(286)(pCaMKII(286)) in the presence of calcium and calmodulin. Therefore, we hypothesized that TBI would result in increased levels of pCaMKII(286), and that such increases would occur early after injury in brain regions known to be damaged following lateral fluid percussion TBI (i.e., hippocampus and cortex). In order to test this hypothesis, immunostaining of CaMKII was examined in rat hippocampus and cortex after lateral fluid percussion (LFP) injury using an antibody directed against pCaMKII(286). LFP injury produced a marked increase in pCaMKII(286) immunostaining in the hippocampus and overlying cortex 30 min after TBI. The pattern of increased immunostaining was uneven, and unexpectedly absent in some hippocampal CA3 pyramidal neurons. This suggests that phosphatase activity may also increase following TBI, resulting in dephosphorylation of pCaMKII(286) in subpopulations of CA3 pyramidal neurons. Western blotting confirmed a rapid increase in levels of pCaMKII(286) at 10 and 30 min after brain injury, and that it was transient and no longer significantly elevated when examined at 3, 8, and 24 h. These results demonstrate that TBI alters the autophosphorylation state of CaMKII, an important neuronal regulator of critical cell functions, including enzyme activities, cell structure, gene expression, and neuronal plasticity, and provide a molecular mechanism that is likely to contribute to cell injury and impaired plasticity after TBI.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Animais , Benzoxazinas , Western Blotting , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Lesões Encefálicas/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Lateralidade Funcional/fisiologia , Imuno-Histoquímica , Masculino , Oxazinas , Fosforilação , Equilíbrio Postural/fisiologia , Ratos , Ratos Sprague-Dawley
5.
J Neurotrauma ; 21(5): 521-39, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15165361

RESUMO

The behavioral and histological effects of the lateral fluid percussion (LFP) brain injury model were compared with the weight drop impact-acceleration model with 10 min of secondary hypoxia (WDIA + H). LFP injury resulted in significant motor deficits on the beam walk and inclined plane, and memory deficits on the radial arm maze and Morris water maze. Motor deficits following LFP remained throughout 6 weeks of behavioral testing. WDIA + H injury produced significant motor deficits on the beam walk and inclined plane immediately following injury, but these effects were transient and recovered by 14 days post-injury. In contrast to the LFP injury, the WDIA + H injured animals showed no memory deficits on the radial arm maze and Morris water maze. In order to determine if the differences in behavioral outcome between models were due to differences in injury mechanism or injury severity, 10 LFP-injured animals were matched with 10 WDIA-injured animals based on injury severity (i.e., time to regain righting reflex after brain injury). The LFP-matched injury group showed greater impairment than the WDIA + H matched injury group on the radial arm maze and Morris water maze. Histological examination of LFP-injured brains with Fluoro-Jade staining 24 h, 48 h, and 7 days post-injury revealed degenerating neurons in the cortex, thalamus, hippocampus, caudate-putamen, brainstem, and cerebellum, with degenerating fibers tracts in the corpus callosum and other major tracts throughout the brain. Fluoro-Jade staining following WDIA+H injury revealed damage to fibers in the optic tract, lateral olfactory tract, corpus callosum, anterior commissure, caudate-putamen, brain stem, and cerebellum. While both models produce reliable and characteristic behavioral and neuronal pathologies, their differences are important to consider when choosing a brain injury model.


Assuntos
Comportamento Animal/fisiologia , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Degeneração Neural/patologia , Animais , Lesões Encefálicas/patologia , Fluoresceínas , Corantes Fluorescentes , Hipóxia/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , Compostos Orgânicos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Coloração e Rotulagem
6.
J Neurotrauma ; 30(4): 292-300, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23140483

RESUMO

Impairments in learning and memory occur in as many as 50% of patients following traumatic brain injury (TBI). Similar impairments occur in rodent models of TBI, and the development of new memory testing procedures provides an opportunity to examine how TBI affects memory processing in specific neural memory systems. Specifically, metric, topological, and temporal ordering tasks are object-based tests for memory of spatial orientation and temporal sequencing working memory developed for use in rodents. Previous studies demonstrated that specific lesions of the dentate gyrus/CA3 of the hippocampus and the parietal cortex resulted in deficits in the metric and topological spatial orientation tasks, respectively. Lesions of the CA1 impaired a rat's ability to recall the temporal order of odors. The purpose of the following study was to determine whether moderate lateral fluid percussion TBI would generate deficits in these working memory tasks, and whether observed deficits were associated with cell loss in the CA2/3 and/or CA1 of the hippocampus. Two weeks following a moderate lateral fluid percussion TBI, adult rats demonstrated significant deficits in both the metric and temporal ordering tasks (p<0.05) but not in the topological task. Stereological analysis identified a significant reduction in neurons in the CA2/3 (p<0.05) but not the CA1 of the hippocampus. These data demonstrate the utility of three object-based tasks to expand our understanding of how different neural memory systems are affected by TBI.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Hipocampo/patologia , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Animais , Modelos Animais de Doenças , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA