Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(44): 9302-9310, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37879076

RESUMO

Enhanced photolysis of particulate nitrate (pNO3) to form photolabile species, such as gas-phase nitrous acid (HONO), has been proposed as a potential mechanism to recycle nitrogen oxides (NOx) in the remote boundary layer ("renoxification"). This article presents a series of laboratory experiments aimed at investigating the parameters that control the photolysis of pNO3 and the efficiency of HONO production. Filters on which artificial or ambient particles had been sampled were exposed to the light of a solar simulator, and the formation of HONO was monitored under controlled laboratory conditions. The results indicate that the photolysis of pNO3 is enhanced, compared to the photolysis of gas-phase HNO3, at low pNO3 levels, with the enhancement factor reducing at higher pNO3 levels. The presence of cations (Na+) and halides (Cl-) and photosensitive organic compounds (imidazole) also enhance pNO3 photolysis, but other organic compounds such as oxalate and succinic acid have the opposite effect. The precise role of humidity in pNO3 photolysis remains unclear. While the efficiency of photolysis is enhanced in deliquescent particles compared to dry particles, some of the experimental results suggest that this may not be the case for supersaturated particles. These experiments suggest that both the composition and the humidity of particles control the enhancement of particulate nitrate photolysis, potentially explaining the variability in results among previous laboratory and field studies. HONO observations in the remote marine boundary layer can be explained by a simple box-model that includes the photolysis of pNO3, in line with the results presented here, although more experimental work is needed in order to derive a comprehensive parametrization of this process.

2.
Environ Geochem Health ; 45(5): 1573-1598, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35536448

RESUMO

The aim of this research was to assess the distribution, sources, contamination status, ecological risk, and human health risk of heavy metals (HMs) in soil and sediments of a used-automobile spare part market in Nigeria. Forty-three (43) soil samples were collected within a spare part market section (SPMS-17 samples), market-residential section (MRES-10 samples), traffic section (TRAS-10 samples), and non-market residential section (NMRS- 6 samples). Fifteen (15) stream sediments were collected within and around SPMS. Based on average concentrations, HMs (As, Cd, Cr, Cu, Fe, Mo, Pb, and Zn) had their highest values in SPMS, and their minimum values were observed in NMRS. The high concentration was as a result of contributions from anthropogenic activities such as the direct discharge of used-lubricant oil, scrap metals, tire wear, and traffic emission in the environment. However, Al, Co, and Mn were derived from the geology of the area. The same trend was observed in the stream sediment section (STSS), except that in addition to Al, Co and Mn in soils, Cr was also sourced from geogenic activity. There were moderate to high enrichment/contamination factors of the anthropogenically sourced HMs, especially in the soil of SPMS, MRES, TRAS and stream sediments (STSS). Similarly, high potential ecological risk (Eri) and ecological risks (RI) were observed for As, Pb, and Cd in SPMS and STSS, while these were moderate in MRES and TRAS. Assessment of health risks was within acceptable limit for most of the HMs in the different sections for both adults and children, except As, Cd, and Pb in SPMS and STSS, which were beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit.


Assuntos
Metais Pesados , Rios , Adulto , Criança , Humanos , Monitoramento Ambiental , Solo , Nigéria , Automóveis , Cádmio , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , China , Sedimentos Geológicos
3.
Faraday Discuss ; 189: 291-315, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27112235

RESUMO

A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions from biomass combustion derived up to 60% from local emissions. Coal combustion as a significant source was only present during eastern air mass inflow and showed very similar concentrations at all sites, indicating the importance of trans-boundary air pollution transport in the study area. Overall, nearly half of the PM10 mass was attributed to urban sources by a simple subtractive approach with highest reduction potentials of up to 80% for local (urban) mitigation measures in ultrafine and coarse particles. Local increments of elemental carbon have decreased by about 50% as compared to the year 2000, corroborating results from a former study on the positive effects of a low emission zone, implemented in Leipzig in 2011.

4.
J Microsc ; 218(Pt 3): 208-18, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15958013

RESUMO

The potential of phase-sensitive acoustic microscopy (PSAM) for characterizing polymer thin films is reviewed in comparison to atomic force microscopy (AFM). This comparison is based on results from three-dimensional vector contrast imaging and multimodal imaging using PSAM and AFM, respectively. The similarities and differences between the information that can be derived from the AFM topography and phase images, and the PSAM phase and amplitude micrographs are examined. In particular, the significance of the PSAM phase information for qualitative and quantitative characterization of the polymer films is examined for systems that generate surface waves, and those that do not. The relative merits, limitations and outlook of both techniques, individually, and as a complementary pair, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA