Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Recept Signal Transduct Res ; 36(1): 79-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26329879

RESUMO

Botulinum neurotoxins (BoNTs) are highly potent multi-domain proteins, responsible for botulism in animals and humans. The modular structural organization of BoNTs has led to the development of novel engineered bio-therapeutic proteins called targeted secretion inhibitors (TSIs). We report here that botulinum neurotoxin A (BoNT/A) and a TSI/A in which the neuronal binding domain of BoNT/A has been substituted by an epidermal growth factor (EGF) ligand, named EGFR-targeted TSI/A, exploit different routes to gain entry in the same in vitro neuroblastoma cell system, SiMa cells. We found that the EGF ligand conferred the affinity to the EGFR-targeted TSI/A at the EGF receptor when compared to an untargeted TSI/A and also the ability to internalize into the cells and cleave its cytosolic target protein SNAP-25. Using high content analysis we found that both BoNT/A and the EGFR-targeted TSI/A enter the cell in a concentration-dependent manner and in compartments which are able to translocate the proteins into the cytosol within 4 h. The EGFR-targeted TSI/A internalized into a compartment which gave a punctate staining pattern by immunofluorescence and partially overlapped with structures positive for the early endosomal marker EAA1; whereas BoNT/A did not internalize into a punctate compartment but did so in an acidifying compartment consistent with local synaptic vesicle recycling. These findings show that the BoNT/A translocation domain, common to both BoNT/A and the EGFR-targeted TSI/A, is a versatile tool for cytosolic delivery from distinct intracellular vesicular compartments.


Assuntos
Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/farmacologia , Receptores ErbB/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Vesículas Sinápticas/metabolismo , Citoplasma/metabolismo , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurotoxinas/química , Neurotoxinas/farmacologia , Transporte Proteico , Proteína 25 Associada a Sinaptossoma/metabolismo , Células Tumorais Cultivadas
2.
Toxins (Basel) ; 15(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37235349

RESUMO

Botulinum neurotoxins (BoNTs) are important therapeutic agents. The in vivo median lethal dose (LD50) assay has been commonly used to measure the potency of BoNT commercial preparations. As an alternative, we developed cell-based assays for abobotulinumtoxinA in both powder (Dysport®, Azzalure®) and liquid (Alluzience®) formulations using the in vitro BoCell® system. The assays demonstrated linearity over 50-130% of the expected relative potency, with a correlation coefficient of 0.98. Mean recoveries of 90-108% of the stated potency were observed over this range. The coefficients of variation for powder and liquid formulations, respectively, were 3.6% and 4.0% for repeatability and 8.3% and 5.0% for intermediate precision. A statistically powered comparability assessment of the BoCell® and LD50 assays was performed. Equivalence was demonstrated between the assays for the liquid formulation at release and end of shelf life using a paired equivalence test with predefined equivalence margins. For the powder formulation, the assays were also shown to be equivalent for release samples and when determining loss of potency following thermal degradation. The BoCell® assay was approved for establishing the potency of abobotulinumtoxinA for both powder and liquid formulations in Europe and for the powder formulation only in the USA.


Assuntos
Toxinas Botulínicas Tipo A , Neurotoxinas , Animais , Camundongos , Pós , Toxinas Botulínicas Tipo A/toxicidade , Dose Letal Mediana
3.
Bioorg Med Chem Lett ; 20(16): 4951-4, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20634071

RESUMO

A series of analogues of the pyrazole lead 1 were synthesized in which the heterocyclic core was replaced with an imidazole. A number of potent antagonists were identified and structure-activity relationships (SAR) were investigated both with respect to activity at the P2X(7) receptor and in vitro metabolic stability. Compound 10 was identified as a potent P2X(7) antagonist with reduced in vitro metabolism and high solubility.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Imidazóis/química , Antagonistas do Receptor Purinérgico P2 , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/farmacologia , Pirazóis/química , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 20(15): 4653-6, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20579878

RESUMO

Structure-activity relationships (SAR) of analogues of lead compound 1 were investigated and compound 16 was selected for further study in animal models of pain. Compound 16 was shown to be a potent antihyperalgesic agent in both the rat acute complete Freund's adjuvant (CFA) model of inflammatory pain [Iadarola, M. J.; Douglass, J.; Civelli, O.; Naranjo, J. R. rain Res.1988, 455, 205] and the knee joint model of chronic inflammatory pain [Wilson, A. W.; Medhurst, S. J.; Dixon, C. I.; Bontoft, N. C.; Winyard, L. A.; Brackenborough, K. T.; De Alba, J.; Clarke, C. J.; Gunthorpe, M. J.; Hicks, G. A.; Bountra, C.; McQueen, D. S.; Chessell, I. P. Eur. J. Pain2006, 10, 537].


Assuntos
Acetamidas/química , Antagonistas do Receptor Purinérgico P2X , Pirazóis/química , Acetamidas/síntese química , Acetamidas/uso terapêutico , Administração Oral , Animais , Modelos Animais de Doenças , Humanos , Dor/tratamento farmacológico , Pirazóis/síntese química , Ratos , Receptores Purinérgicos P2X7/metabolismo , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 20(22): 6370-4, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20934331

RESUMO

A backup molecule to compound 2 was sought by targeting the most likely metabolically vulnerable site in this molecule. Compound 18 was subsequently identified as a potent P2X(7) antagonist with very low in vivo clearance and high oral bioavailability in all species examined. Some evidence to support the role of P2X(7) in the etiology of pain is also presented.


Assuntos
Imidazolinas/farmacologia , Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Meia-Vida , Haplorrinos , Imidazolinas/administração & dosagem , Imidazolinas/química , Imidazolinas/farmacocinética , Antagonistas Purinérgicos/administração & dosagem , Antagonistas Purinérgicos/química , Antagonistas Purinérgicos/farmacocinética , Ratos
7.
Bioorg Med Chem Lett ; 20(17): 5080-4, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20673717

RESUMO

A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X(7) receptor antagonist. Structure-activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X(7) antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies.


Assuntos
Amidas/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ácido Pirrolidonocarboxílico/química , Receptores Purinérgicos P2X7/efeitos dos fármacos , Amidas/química , Descoberta de Drogas , Modelos Moleculares , Antagonistas do Receptor Purinérgico P2/química , Relação Estrutura-Atividade
8.
Front Pharmacol ; 11: 617867, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519485

RESUMO

Botulinum neurotoxins (BoNTs) are zinc metalloproteases that block neurotransmitter release at the neuromuscular junction (NMJ). Their high affinity for motor neurons combined with a high potency have made them extremely effective drugs for the treatment of a variety of neurological diseases as well as for aesthetic applications. Current in vitro assays used for testing and developing BoNT therapeutics include primary rodent cells and immortalized cell lines. Both models have limitations concerning accuracy and physiological relevance. In order to improve the translational value of preclinical data there is a clear need to use more accurate models such as human induced Pluripotent Stem Cells (hiPSC)-derived neuronal models. In this study we have assessed the potential of four different human iPSC-derived neuronal models including Motor Neurons for BoNT testing. We have characterized these models in detail and found that all models express all proteins needed for BoNT intoxication and showed that all four hiPSC-derived neuronal models are sensitive to both serotype A and E BoNT with Motor Neurons being the most sensitive. We showed that hiPSC-derived Motor Neurons expressed authentic markers after only 7 days of culture, are functional and able to form active synapses. When cultivated with myotubes, we demonstrated that they can innervate myotubes and induce contraction, generating an in vitro model of NMJ showing dose-responsive sensitivity BoNT intoxication. Together, these data demonstrate the promise of hiPSC-derived neurons, especially Motor Neurons, for pharmaceutical BoNT testing and development.

9.
Toxins (Basel) ; 10(7)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973505

RESUMO

Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.


Assuntos
Toxinas Botulínicas , Neurotoxinas , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/farmacologia , Humanos , Neurotoxinas/genética , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas SNARE/metabolismo
10.
Pharmacol Res Perspect ; 6(6): e00446, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30519475

RESUMO

Botulinum neurotoxin (BoNT) is a major therapeutic agent. Of seven native BoNT serotypes (A to G), only A and B are currently used in the clinic. Here we compared the potency of commercially available purified native serotypes A1 to F1 across in vitro, ex vivo, and in vivo assays. BoNT potency in vitro was assessed in rat primary cells (target protein cleavage and neurotransmitter release assays) in supraspinal, spinal, and sensory systems. BoNT potency ex vivo was measured in the mouse phrenic nerve hemidiaphragm (PNHD) assay, measuring muscle contractility. In vivo, BoNT-induced muscle relaxation in mice and rats was assessed in the Digit Abduction Score (DAS) test, while effects on body weight (BW) gain were used to assess tolerability. In all assays, all BoNT serotypes were potent toxins, except serotype D1 in vivo which failed to produce significant muscle flaccidity in mice and rats. In rats, all serotypes were well-tolerated, whereas in mice, reductions in BW were detected at high doses. Serotype A1 was the most potent serotype across in vitro, ex vivo, and in vivo assays. The rank order of potency of the serotypes revealed differences among assays. For example, species-specificity was seen for serotype B1, and to a lesser extent for serotype C1. Serotypes F1 and C1, not currently in the clinic, showed preference for sensory over motor models and therefore could be considered for development in conditions involving the somatosensory system.


Assuntos
Toxinas Botulínicas/farmacologia , Clostridium botulinum/genética , Relaxamento Muscular/efeitos dos fármacos , Neurotoxinas/farmacologia , Sorogrupo , Animais , Bioensaio/métodos , Peso Corporal/efeitos dos fármacos , Toxinas Botulínicas/genética , Toxinas Botulínicas/isolamento & purificação , Diafragma/inervação , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Modelos Animais , Neurônios , Neurotoxinas/genética , Neurotoxinas/isolamento & purificação , Nervo Frênico/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
11.
Toxins (Basel) ; 10(5)2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783676

RESUMO

Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.


Assuntos
Toxinas Botulínicas/uso terapêutico , Neurotoxinas/uso terapêutico , Fármacos do Sistema Nervoso Periférico/uso terapêutico , Animais , Vias de Administração de Medicamentos , Composição de Medicamentos , Humanos , Sorogrupo
12.
Br J Pharmacol ; 143(1): 186-92, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15302683

RESUMO

1. TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide (H(2)O(2))-mediated TRPM2 activation using a tetracycline-inducible TRPM2-expressing cell line. 2. In whole-cell patch-clamp recordings, intracellular adenine 5'-diphosphoribose (ADP-ribose) triggered an inward current in tetracycline-induced TRPM2-human embryonic kidney (HEK293) cells, but not in uninduced cells. Similarly, H(2)O(2) stimulated an increase in [Ca(2+)](i) (pEC(50) 4.54+/-0.02) in Fluo-4-loaded TRPM2-expressing HEK293 cells, but not in uninduced cells. Induction of TRPM2 expression caused an increase in susceptibility to plasma membrane damage and mitochondrial dysfunction in response to H(2)O(2). These data demonstrate functional expression of TRPM2 following tetracycline induction in TRPM2-HEK293 cells. 3. PARP inhibitors SB750139-B (patent number DE10039610-A1 (Lubisch et al., 2001)), PJ34 (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide) and DPQ (3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone) inhibited H(2)O(2)-mediated increases in [Ca(2+)](i) (pIC(50) vs 100 microm H(2)O(2): 7.64+/-0.38; 6.68+/-0.28; 4.78+/-0.05, respectively), increases in mitochondrial dysfunction (pIC(50) vs 300 microm H(2)O(2): 7.32+/-0.23; 6.69+/-0.22; 5.44+/-0.09, respectively) and decreases in plasma membrane integrity (pIC(50) vs 300 microm H(2)O(2): 7.45+/-0.27; 6.35+/-0.18; 5.29+/-0.12, respectively). The order of potency of the PARP inhibitors in these assays (SB750139>PJ34>DPQ) was the same as for inhibition of isolated PARP enzyme. 4. SB750139-B, PJ34 and DPQ had no effect on inward currents elicited by intracellular ADP-ribose in tetracycline-induced TRPM2-HEK293 cells, suggesting that PARP inhibitors are not interacting directly with the channel. 5. SB750139-B, PJ34 and DPQ inhibited increases in [Ca(2+)](i) in a rat insulinoma cell line (CRI-G1 cells) endogenously expressing TRPM2 (pIC(50) vs 100 microm H(2)O(2): 7.64+/-0.38; 6.68+/-0.28; 4.78+/-0.05, respectively). 6. These data suggest that oxidative stress causes TRPM2 channel opening in both recombinant and endogenously expressing cell systems via activation of PARP enzymes.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/farmacologia , Animais , Western Blotting , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Eletrofisiologia , Ativação Enzimática , Corantes Fluorescentes , Fluorometria , Humanos , Peróxido de Hidrogênio/farmacologia , Insulinoma/metabolismo , Compostos Orgânicos , Neoplasias Pancreáticas/metabolismo , Ratos , Canais de Cátion TRPM , Sais de Tetrazólio , Tiazóis
13.
J Recept Signal Transduct Res ; 26(3): 159-78, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16777713

RESUMO

Eight members of the TRP-melastatin (TRPM) subfamily have been identified, whose physiological functions and distribution are poorly characterized. Although tissue expression and distribution patterns have been reported for individual TRPM channels, comparisons between individual studies are not possible because of variations in analysis techniques and tissue selection. We report here a comparative analysis of the expression patterns of all of the human TRPM channels in selected peripheral tissues and the central nervous system (CNS) using two distinct but complimentary approaches: TaqMan and SYBR Green real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). These techniques generated comparative distribution profiles and demonstrated tissue-specific co-expression of TRPM mRNA species, indicating significant potential for the formation of heteromeric channels. TRPM channels 2, 4, 5, 6, and 7 in contrast to 1, 3, and 8 are widely distributed in the CNS and periphery. The tissues demonstrating highest expression for individual family members were brain (TRPM1), brain and bone marrow (TRPM2), brain and pituitary (TRPM3), intestine and prostate (TRPM4), intestine, pancreas, and prostate (TRPM5), intestine and brain (TRPM6), heart, pituitary, bone, and adipose tissue (TRPM7), and prostate and liver (TRPM8). The data reported here will guide the elucidation of TRPM channel physiological functions.


Assuntos
Canais de Cátion TRPM/genética , Sequência de Bases , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , Sensibilidade e Especificidade , Canais de Cátion TRPM/classificação , Distribuição Tecidual
14.
J Recept Signal Transduct Res ; 26(3): 179-98, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16777714

RESUMO

We report the detailed expression profile of TRPM2 mRNA within the human central nervous system (CNS) and demonstrate increased TRPM2 mRNA expression at 1 and 4 weeks following ischemic injury in the rat transient middle cerebral artery occlusion (tMCAO) stroke model. Microglial cells play a key role in pathology produced following ischemic injury in the CNS and possess TRPM2, which may contribute to stroke-related pathological responses. We show that TRPM2 mRNA is present in the human C13 microglial cell line and is reduced by antisense treatment. Activation of C13 cells by interleukin-1beta leads to a fivefold increase of TRPM2 mRNA demonstrating transcriptional regulation. To confirm mRNA distribution correlated with functional expression, we combined electrophysiology, Ca2+ imaging, and antisense approaches. C13 microglia exhibited, when stimulated with hydrogen peroxide (H2O2), increased [Ca2+]i, which was reduced by antisense treatment. Moreover, patch-clamp recordings from C13 demonstrated that increased intracellular adenosine diphosphoribose (ADPR) or extracellular H2O2 induced an inward current, consistent with activation of TRPM2. In addition we confirm the functional expression of a TRPM2-like conductance in primary microglial cultures derived from rats. Activation of TRPM2 in microglia during ischemic brain injury may mediate key aspects of microglial pathophysiological responses.


Assuntos
Microglia/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Animais , Sequência de Bases , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Interleucina-1/farmacologia , Masculino , Microglia/efeitos dos fármacos , Artéria Cerebral Média , RNA Antissenso/administração & dosagem , RNA Antissenso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
15.
J Neurosci Res ; 79(4): 545-53, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15635608

RESUMO

Cerebellar granule cells are targeted selectively by mercury compounds in vivo. Despite the affinity of mercury for thiol groups present in all cells, the molecular determinant(s) of selective cerebellar degeneration remain to be elucidated fully. We studied the effect of mercury compounds on neuronal glutamate transport in primary cultures of mouse cerebellar granule cells. Immunoblots probed with an antibody against the excitatory amino acid transporter (EAAT) neuronal glutamate transporter, EAAT3, revealed the presence of a specific band in control and mercury-treated cultures. Micromolar concentrations of both methylmercury and mercuric chloride increased the release of endogenous glutamate, inhibited glutamate uptake, reduced mitochondrial activity, and decreased ATP levels. All these effects were completely prevented by the nonpermeant reducing agent Tris-(2-carboxyethyl)phosphine (TCEP). Reduction of mitochondrial activity by mercuric chloride, but not by methylmercury, was inhibited significantly by 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) and by reduced extracellular Cl- ion concentration. In addition, DIDS and low extracellular Cl- completely inhibited the release of glutamate induced by mercuric chloride, and produced a partial although significant reduction of that induced by methylmercury. We suggest that a direct inhibition of glutamate uptake triggers an imbalance in cell homeostasis, leading to neuronal failure and Cl(-)-regulated cellular glutamate efflux. Our results demonstrate that neuronal glutamate transport is a novel target to be taken into account when assessing mercury-induced neurotoxicity.


Assuntos
Cerebelo/citologia , Ácido Glutâmico/metabolismo , Compostos de Mercúrio/farmacologia , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Ácido Aspártico/farmacocinética , Western Blotting/métodos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cloretos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroquímica/métodos , Transportador 3 de Aminoácido Excitatório , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática , Camundongos , Neurônios/metabolismo , Fosfinas/farmacologia , Simportadores/metabolismo , Trítio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA