RESUMO
The sugarcane giant borer, Telchin licus licus, is an insect pest that causes significant losses in sugarcane crops and in the sugar-alcohol sector. Chemical and manual control methods are not effective. As an alternative, in the current study, we have screened Bacillus thuringiensis (Bt) Cry toxins with high toxicity against this insect. Bioassays were conducted to determine the activity of four Cry toxins (Cry1A (a, b, and c) and Cry2Aa) against neonate T. licus licus larvae. Notably, the Cry1A family toxins had the lowest LC50 values, in which Cry1Ac presented 2.1-fold higher activity than Cry1Aa, 1.7-fold larger than Cry1Ab, and 9.7-fold larger than Cry2Aa toxins. In silico analyses were performed as a perspective to understand putative interactions between T. licus licus receptors and Cry1A toxins. The molecular dynamics and docking analyses for three putative aminopeptidase N (APN) receptors (TlAPN1, TlAPN3, and TlAPN4) revealed evidence for the amino acids that may be involved in the toxin-receptor interactions. Notably, the properties of Cry1Ac point to an interaction site that increases the toxin's affinity for the receptor and likely potentiate toxicity. The interacting amino acid residues predicted for Cry1Ac in this work are probably those shared by the other Cry1A toxins for the same region of APNs. Thus, the presented data extend the existing knowledge of the effects of Cry toxins on T. licus licus and should be considered in further development of transgenic sugarcane plants resistant to this major occurring insect pest in sugarcane fields.
Assuntos
Bacillus thuringiensis , Saccharum , Animais , Bacillus thuringiensis/química , Endotoxinas/farmacologia , Endotoxinas/toxicidade , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Larva , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologiaRESUMO
Banana (Musa spp.), which is one of the world's most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
Assuntos
Musa , Musa/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Índia , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de PlantasRESUMO
Caffeoyl shikimate esterase (CSE) was recently shown to play an essential role in lignin biosynthesis in Arabidopsis (Arabidopsis thaliana) and later in Medicago truncatula However, the general function of this enzyme was recently questioned by the apparent lack of CSE activity in lignifying tissues of different plant species. Here, we show that down-regulation of CSE in hybrid poplar (Populus tremula × Populus alba) resulted in up to 25% reduced lignin deposition, increased levels of p-hydroxyphenyl units in the lignin polymer, and a relatively higher cellulose content. The transgenic trees were morphologically indistinguishable from the wild type. Ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a reduced abundance of several oligolignols containing guaiacyl and syringyl units and their corresponding hydroxycinnamaldehyde units, in agreement with the reduced flux toward coniferyl and sinapyl alcohol. These trees accumulated the CSE substrate caffeoyl shikimate along with other compounds belonging to the metabolic classes of benzenoids and hydroxycinnamates. Furthermore, the reduced lignin amount combined with the relative increase in cellulose content in the CSE down-regulated lines resulted in up to 62% more glucose released per plant upon limited saccharification when no pretreatment was applied and by up to 86% and 91% when acid and alkaline pretreatments were used. Our results show that CSE is not only important for the lignification process in poplar but is also a promising target for the development of improved lignocellulosic biomass crops for sugar platform biorefineries.
Assuntos
Metabolismo dos Carboidratos , Esterases/metabolismo , Inativação Gênica , Lignina/metabolismo , Populus/enzimologia , Populus/genética , Ácido Chiquímico/metabolismo , Biomassa , Metabolismo dos Carboidratos/genética , Celulose/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Fenóis/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Xilema/metabolismoRESUMO
Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.
RESUMO
Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.
RESUMO
The cotton boll weevil, Anthonomus grandis, is the most economically important pest of cotton in Brazil. Pest management programs focused on A. grandis are based mostly on the use of chemical insecticides, which may cause serious ecological impacts. Furthermore, A. grandis has developed resistance to some insecticides after their long-term use. Therefore, alternative control approaches that are more sustainable and have reduced environmental impacts are highly desirable to protect cotton crops from this destructive pest. RNA interference (RNAi) is a valuable reverse genetics tool for the investigation of gene function and has been explored for the development of strategies to control agricultural insect pests. This study aimed to evaluate the biological role of the Laccase2 (AgraLac2) gene in A. grandis and its potential as an RNAi target for the control of this insect pest. We found that AgraLac2 is expressed throughout the development of A. grandis with significantly higher expression in pupal and adult developmental stages. In addition, the immunolocalization of the AgraLac2 protein in third-instar larvae using specific antibodies revealed that AgraLac2 is distributed throughout the epithelial tissue, the cuticle and the tracheal system. We also verified that the knockdown of AgraLac2 in A. grandis resulted in an altered cuticle tanning process, molting defects and arrested development. Remarkably, insects injected with dsAgraLac2 exhibited defects in cuticle hardening and pigmentation. As a consequence, the development of dsAgraLac2-treated insects was compromised, and in cases of severe phenotypic defects, the insects subsequently died. On the contrary, insects subjected to control treatments did not show any visible phenotypic defects in cuticle formation and successfully molted to the pupal and adult stages. Taken together, our data indicate that AgraLac2 is involved in the cuticle tanning process in A. grandis and may be a promising target for the development of RNAi-based technologies.
RESUMO
Leaf pathogens are limiting factors in banana (Musa spp.) production, with Pseudocercospora spp. responsible for the important Sigatoka disease complex. In order to investigate cellular processes and genes involved in host defence responses, quantitative real-time PCR (RT-qPCR) is an analytical technique for gene expression quantification. Reliable RT-qPCR data, however, requires that reference genes for normalization of mRNA levels in samples are validated under the conditions employed for expression analysis of target genes. We evaluated the stability of potential reference genes ACT1, α-TUB, UBQ1, UBQ2, GAPDH, EF1α, APT and RAN. Total RNA was extracted from leaf tissues of Musa acuminata genotypes Calcutta 4 (resistant) and Cavendish Grande Naine (susceptible), both subjected to P. musae infection. Expression stability was determined with NormFinder, BestKeeper, geNorm and RefFinder algorithms. UBQ2 and RAN were the most stable across all M. acuminata samples, whereas when considering inoculated and non-inoculated leaf samples, APT and UBQ2 were appropriate for normalization in Calcutta 4, with RAN and α-TUB most stable in Cavendish Grande Naine. This first study of reference genes for relative quantification of target gene expression in the M. acuminata-P. musae interaction will enable reliable analysis of gene expression in this pathosystem, benefiting elucidation of disease resistance mechanisms.
Assuntos
Ascomicetos/patogenicidade , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Musa/genética , Doenças das Plantas/genética , Algoritmos , Perfilação da Expressão Gênica , Genes de Plantas , Modelos Teóricos , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.
Assuntos
Digestão/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Lepidópteros/genética , Saccharum/parasitologia , Sequência de Aminoácidos , Animais , Antígenos CD13/genética , Etiquetas de Sequências Expressas/química , Biblioteca Gênica , Ontologia Genética , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/fisiologia , Estágios do Ciclo de Vida/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de AminoácidosRESUMO
Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.