Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 591(7849): 327-331, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33597752

RESUMO

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Animais , Encéfalo/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/ultraestrutura , Cloretos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Transportador 1 de Aminoácido Excitatório/química , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/ultraestrutura , Feminino , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Mutação , Oócitos , Conformação Proteica , Xenopus laevis
2.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212408

RESUMO

The multifrequency formalism is generalized and exploited to quantify attractive forces, i.e., van der Waals interactions, with small amplitudes or gentle forces in bimodal and trimodal atomic force microscopy (AFM). The multifrequency force spectroscopy formalism with higher modes, including trimodal AFM, can outperform bimodal AFM for material property quantification. Bimodal AFM with the second mode is valid when the drive amplitude of the first mode is approximately an order of magnitude larger than that of the second mode. The error increases in the second mode but decreases in the third mode with a decreasing drive amplitude ratio. Externally driving with higher modes provides a means to extract information from higher force derivatives while enhancing the range of parameter space where the multifrequency formalism holds. Thus, the present approach is compatible with robustly quantifying weak long range forces while extending the number of channels available for high resolution.

3.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408550

RESUMO

Ozone has been successfully employed in water treatment due to its ability to oxidize a wide variety of refractory compounds. In order to increase the process efficiency and optimize its economy, the implementation of heterogeneous catalysts has been encouraged. In this context, the use of cheap and widely available natural materials is a promising option that would promote the utilization of ozone in a cost-effective water treatment process. This review describes the use of natural clays, zeolites and oxides as supports or active catalysts in the ozonation process, with emphasis on the structural characteristics and modifications performed in the raw natural materials; the catalytic oxidation mechanism; effect of the operating parameters and degradation efficiency outcomes. According to the information compiled, more research in realistic scenarios is needed (i.e., real wastewater matrix or continuous operation in pilot scale) in order to transfer this technology to the treatment of real wastewater streams.


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Catálise , Argila , Óxidos , Ozônio/química , Águas Residuárias , Poluentes Químicos da Água/análise , Zeolitas/química
4.
Neurochem Res ; 45(6): 1268-1286, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981058

RESUMO

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems-the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Antineoplásicos/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 5 de Aminoácido Excitatório/metabolismo , Neoplasias/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Transportador 3 de Aminoácido Excitatório/química , Transportador 5 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 5 de Aminoácido Excitatório/química , Humanos , Neoplasias/tratamento farmacológico , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
5.
Water Sci Technol ; 79(10): 1897-1904, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31294706

RESUMO

Industrial wastewaters and their treatment are now placed at the heart of the environmental concerns that industries face. Some research work has been carried out in order to limit the impact of these wastes on the environment as well as their costs. In this study, wastewater dehydrated sludge (55% wt. water content) from the paper industry was used to recover cellulose by using tetrakis(hydroxymethyl)phosphonium chloride, [P(CH2OH)4]Cl, ionic liquid as a solvent. The ionic liquid has shown remarkable results in terms of cellulose extraction in addition to its non-volatility and lower toxicity compared to organic volatile solvents. All cellulose, based on dry sludge, was recovered from the industrial dehydrated sludge with better operation conditions. The influence of temperature and the quantity of ionic liquid was preliminary studied in order to optimise the extraction conditions.


Assuntos
Líquidos Iônicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Celulose , Íons , Esgotos
6.
Bioorg Med Chem ; 26(22): 5852-5869, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401502

RESUMO

Dual-specificity tyrosine phosphorylation-related kinase 1A (DYRK1A) is a dual-specificity protein kinase that catalyses phosphorylation and autophosphorylation. Higher DYRK1A expression correlates with cancer, in particular glioblastoma present within the brain. We report here the synthesis and biological evaluation of new heterocyclic diphenolic derivatives designed as novel DYRK1A inhibitors. The generation of these heterocycles such as benzimidazole, imidazole, naphthyridine, pyrazole-pyridines, bipyridine, and triazolopyrazines was made based on the structural modification of the lead DANDY and tested for their ability to inhibit DYRK1A. None of these derivatives showed significant DYRK1A inhibition but provide valuable knowledge around the importance of the 7-azaindole moiety. These data will be of use for developing further structure-activity relationship studies to improve the selective inhibition of DYRK1A.


Assuntos
Compostos Heterocíclicos/farmacologia , Fenóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/isolamento & purificação , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Quinases Dyrk
7.
Chemistry ; 22(11): 3835-45, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26749319

RESUMO

The photoreaction of 2(5H)-furanones with alkynes has been investigated. The complexity of this process is evidenced by the variety of isolated products, which have allowed disclosing interesting mechanistic aspects. When the reaction is performed in acetonitrile under direct excitation, in addition to the primary [2+2] cycloadducts, products derived from an 1,3-acyl shift rearrangement are also formed. For unsymmetrical alkynes, the rearrangement of the head-to-tail primary adducts produces new regioisomers and, when the starting furanone is chiral, this rearrangement inverts the relative anti/syn geometry of the primary cycloadducts. In the reactions performed in acetone under photosensitized conditions, rearranged products were never detected, supporting that the 1,3-acyl shift takes place from the singlet excited state S1 of the ß,γ-unsaturated lactone. When bis(trimethylsilyl)acetylene is used as the alkyne partner, the major photoproducts are monocyclic bis(trimethylsilyl)lactones.

8.
J Org Chem ; 80(19): 9437-45, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26352803

RESUMO

The photoactivated evolution of a series of enantiomerically pure 5-oxymethyl-2(5H)-furanones has been investigated. The observed intramolecular photoreactions have proven to be a straightforward entry to diverse and stereochemically rich fragment-molecules, most of which contain the privileged tetrahydropyran (THP) scaffold. The formation of the THP involves a 1,5-hydrogen atom transfer process, leading to a diradical intermediate that recombines to form a new σ C-C bond. These reactions take place under both sensitized and nonsensitized conditions, and they are highly stereoselective. When the substrate contains an allyl residue, the intramolecular [2 + 2] cycloaddition leading to cyclobutanes competes advantageously. When the substrate contains a THP residue, the cyclization involves the concomitant formation of [6,6]-spiroketals with nonanomeric relationships.

9.
Int J Cancer ; 135(5): 1060-71, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24531984

RESUMO

Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.


Assuntos
Sistema ASC de Transporte de Aminoácidos/biossíntese , Glutamina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/biossíntese , Melanoma/patologia , Complexos Multiproteicos/antagonistas & inibidores , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Aminoácidos Cíclicos/farmacologia , Compostos de Benzil/farmacologia , Transporte Biológico , Proteína Quinase CDC2/biossíntese , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Humanos , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Melanoma/metabolismo , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Serina/análogos & derivados , Serina/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Esferoides Celulares , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina/biossíntese
10.
J Org Chem ; 78(9): 4483-9, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23581881

RESUMO

A stereodivergent approach to (+)- and (-)-isolineatin using (S)-4-methyl-5-pivaloyloxymethyl-2(5H)-furanone as the single source of asymmetry by exploiting the inherent chirality at the C-5 stereocenter is described.


Assuntos
Furanos/química , Feromônios/síntese química , Piranos/síntese química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Feromônios/química , Piranos/química , Estereoisomerismo
11.
Org Biomol Chem ; 11(38): 6562-8, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23982632

RESUMO

A new synthesis of (+)-gabosine C has been accomplished as part of a general diversity-oriented approach that also delivered the previously unknown (-)-4-epi-gabosine C. The identification of the unexpected intermediate (+)-8, together with the isolation of ketones 9 and 10 in previous investigations, prompted us to formulate a new hypothesis for the biosynthesis of gabosines, based on a keto-enol equilibrium cascade pathway starting from 2-epi-5-epi-valiolone, along which the necessary precursors for all the different types of gabosines are generated.


Assuntos
Cicloexanóis/síntese química , Cicloexanonas/síntese química , Cetonas/química , Cicloexanóis/química , Cicloexanóis/metabolismo , Cicloexanonas/química , Cicloexanonas/metabolismo , Estrutura Molecular , Estereoisomerismo
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545645

RESUMO

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Assuntos
GTP Fosfo-Hidrolases/química , Gallionellaceae/enzimologia , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
13.
J Biol Chem ; 286(44): 38190-38201, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21908891

RESUMO

Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.


Assuntos
DNA/química , Transativadores/fisiologia , Motivos de Aminoácidos , Sítios de Ligação , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transativadores/química , Transcrição Gênica , Dedos de Zinco
14.
J Org Chem ; 77(11): 5030-5, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22607108

RESUMO

The first total synthesis of (+)-gabosine J and that of the epimer at C4 of its enantiomer have been accomplished through an enantioselective approach from a common intermediate 1. These syntheses have allowed us to establish the correct relative configuration of the natural metabolite, which was originally misassigned. This work, together with our former syntheses of other gabosines and related compounds, validates enone 1 as a general synthetic precursor for this kind of carbasugars.


Assuntos
Cicloexanonas/química , Cicloexanonas/síntese química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
15.
J Environ Manage ; 102: 148-64, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22459012

RESUMO

During the last decade, several physico-chemical and biological techniques have been developed to remove colour from textile wastewaters. Some of these techniques rely on and many will profit from activated carbon (AC). The role of AC is versatile: (1) it acts as a dye adsorbent, not only in straightforward adsorption processes but also in AC-enhanced coagulation and membrane filtration processes; (2) it generates strong oxidising agents (mostly, hydroxyl (OH) radicals) in electrochemical dye oxidation; (3) it catalyses OH production in advanced oxidation processes; (4) it catalyses anaerobic (azo) dye reduction and supports biofilm growth in microbial dye removal. This paper reviews the role of AC in dye decolourisation, evaluates the feasibility of each AC-amended decolourisation technique and discusses perspectives on future research.


Assuntos
Carbono/química , Corantes/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Oxirredução , Ozônio/química , Processos Fotoquímicos
16.
Curr Opin Struct Biol ; 75: 102405, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709614

RESUMO

Glutamate transporters facilitate the removal of this excitatory neurotransmitter from the synapse. Increasing evidence indicates that this process is linked to intrinsic chloride channel activity that is thermodynamically uncoupled from substrate transport. A recent cryo-EM structure of GltPh - an archaeal homolog of the glutamate transporters - in an open channel state has shed light on the structural basis for channel opening formed at the interface of two domains within the transporter which is gated by two clusters of hydrophobic residues. These transporters cycle through several conformational states during the transport process, including the chloride conducting state, which appears to be stabilised by protein-membrane interactions and membrane deformation. Several point mutations that perturb the chloride conductance can have detrimental effects and are linked to the pathogenesis of the neurological disorder, episodic ataxia type 6.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Cloretos , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Glutamatos , Transporte de Íons
17.
Membranes (Basel) ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35207095

RESUMO

Carbon-based membranes integrated with anaerobic biodegradation are presented as a unique wastewater treatment approach to deal with dye effluents. This study explores the scope of ceramic-supported carbon membrane bioreactors (B-CSCM) and ceramic-supported graphene oxide membrane bioreactors (B-CSGOM) to decolorize azo dye mixtures (ADM) and other dyes. The mixture was prepared using an equimolar composition of monoazo Acid Orange 7, diazo Reactive Black 5, and triazo Direct Blue 71 dye aqueous solution. Afterwards, as in the ADM experiment, both compact units were investigated for their ability in the biodecolorization of Methylene Blue (MB) and Rhodamine B (RhB) dye solutions, which do not belong to the azo family. The obtained outcomes revealed that the conductive surface of the graphene oxide (GO) membrane resulted in a more efficient and higher color removal of all dye solutions than B-CSCM under a wide feed concentration and permeate flux ranges. The maximum color removal at low feed concentration (50 mg·L-1) and permeate flux (0.05 L·m-2·h-1) was 96% for ADM, 98% for MB and 94% for RhB, whereas it was 89%, 94% and 66%, respectively, for B-CSCM. This suggests that the robust, cost-effective, efficient nanostructures of B-CSGOM can successfully remove diverse azo dye solutions from wastewater better than the B-CSCM does.

18.
ACS Chem Biol ; 17(2): 426-437, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35015506

RESUMO

Biosynthesis of the hydroxamic acid siderophore desferrioxamine D1 (DFOD1, 6), which is the N-acetylated analogue of desferrioxamine B (DFOB, 5), has been delineated. Enzyme-independent Ac-CoA-mediated N-acetylation of 5 produced 6, in addition to three constitutional isomers containing an N-O-acetyl group installed at either one of the three hydroxamic acid groups of 5. The formation of N-Ac-DFOB (DFOD1, 6) and the composite of N-O-acetylated isomers N-O-Ac-DFOB[001] (6a), N-O-Ac-DFOB[010] (6b), and N-O-Ac-DFOB[100] (6c) (defined as the N-O-Ac motif positioned within the terminal amine, internal, or N-acetylated region of 5, respectively), was pH-dependent, with 6a-6c dominant at pH < 8.5 and 6 dominant at pH > 8.5. The trend in the pH dependence was consistent with the pKa values of the NH3+ (pKa ∼ 10) and N-OH (pKa ∼ 8.5-9) groups in 5. The N- and N-O-acetyl motifs can be conceived as a post-biosynthetic modification (PBM) of a nonproteinaceous secondary metabolite, akin to a post-translational modification (PTM) of a protein. The pH-labile N-O-acetyl group could act as a reversible switch to modulate the properties and functions of secondary metabolites, including hydroxamic acid siderophores. An alternative (most likely minor) biosynthetic pathway for 6 showed that the nonribosomal peptide synthetase-independent siderophore synthetase DesD was competent in condensing N'-acetyl-N-succinyl-N-hydroxy-1,5-diaminopentane (N'-Ac-SHDP, 7) with the dimeric hydroxamic acid precursor (AHDP-SHDP, 4) native to 5 biosynthesis to generate 6. The strategy of diversifying protein structure and function using PTMs could be paralleled in secondary metabolites with the use of PBMs.


Assuntos
Desferroxamina , Sideróforos , Acetilcoenzima A/metabolismo , Vias Biossintéticas , Desferroxamina/metabolismo , Concentração de Íons de Hidrogênio , Sideróforos/metabolismo
19.
Proteins ; 79(8): 2365-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21638332

RESUMO

One of the most common ways to demonstrate a direct protein-protein interaction in vitro is the glutathione-S-transferse (GST)-pulldown. Here we report the detailed characterization of a putative interaction between two transcription factor proteins, GATA-1 and Krüppel-like factor 3 (KLF3/BKLF) that show robust interactions in GST-pulldown experiments. Attempts to map the interaction interface of GATA-1 on KLF3 using a mutagenic screening approach did not yield a contiguous binding face on KLF3, suggesting that the interaction might be non-specific. NMR experiments showed that the proteins do not interact at protein concentrations of 50-100 µM. Rather, the GST tag can cause part of KLF3 to misfold. In addition to misfolding, the fact that both proteins are DNA-binding domains appears to introduce binding artifacts (possibly nucleic acid bridging) that cannot be resolved by the addition of nucleases or ethidium bromide (EtBr). This study emphasizes the need for caution in relying on GST-pulldown results and related methods, without convincing confirmation from different approaches.


Assuntos
Fator de Transcrição GATA1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Camundongos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
20.
Arch Biochem Biophys ; 506(2): 123-9, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21094126

RESUMO

RNase A forms 3D domain-swapped oligomers with novel enzymatic and biological activities. We study how crowding agents and osmolytes affect the formation and dissociation of RNase A oligomers. The crowding agents Ficoll and dextran were found to enhance oligomer formation, whereas the stabilizers sodium sulfate, glycine and trimethylammonium oxide (TMAO) do not. In contrast, TMAO significantly slows RNase A dimer dissociation, while the effect of Ficoll is small. These results lead us to propose that the mechanisms of oligomer formation and dissociation are different. In the RNase A "C-dimer", the C-terminal ß-strand is swapped between two subunits. The loop preceding this ß-strand adopts a ß-sheet which has been proposed to resemble amyloid structurally. Hydrogen/deuterium (H/D) exchange of the RNase A C-dimer reveal that the H-bonds formed between the swapped C-terminal ß-strand and the other subunit are strong. Their rupture may be crucial for C-dimer dissociation. In contrast, H-bonds formed by Asn 113 in the novel ß-sheet adopted by the hinge loop in the C-dimer are not strongly protected. Besides the fundamental insights obtained, the results represent a technical advance for obtaining increased oligomer yields and storage lifetimes.


Assuntos
Ribonuclease Pancreático/química , Animais , Bovinos , Dextranos , Dimerização , Estabilidade Enzimática , Ficoll , Ligação de Hidrogênio , Técnicas In Vitro , Metilaminas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA