Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immun Ageing ; 20(1): 64, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986079

RESUMO

BACKGROUND: The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS: We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION: These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.

2.
FASEB J ; 33(1): 896-908, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052484

RESUMO

Spaceflights are known to affect the immune system. In a previous study, we demonstrated that hypergravity exposure during murine development modified 85% of the T-cell receptor (TCR)-ß repertoire. In this study, we investigated whether socioenvironmental stressors encountered during space missions affect T lymphopoiesis and the TCR-ß repertoire. To address this question, pregnant mice were subjected throughout gestation to chronic unpredictable mild stressors (CUMS), a model used to mimic socioenvironmental stresses encountered during space missions. Then, newborn T lymphopoiesis and the TCR-ß repertoire were studied by flow cytometry and high-throughput sequencing, respectively. No change in thymocyte maturation or TCR expression were noted. TCR-ß repertoire analysis revealed that 75% of neonate TCR-ß sequences resulted from the expression of 3 variable (V)ß segments and that this core repertoire was not affected by CUMS. However, the minor repertoire, representing 25% of the global repertoire, was sensitive to CUMS exposure. We also showed that the variable (diversity) joining [V(D)J] recombination process was unlikely to be affected. Finally, we noted that the CUMS neonatal minor repertoire was more self-reactive than the one of control pups. These findings show that socioenvironmental stressors such as those encountered during space missions affect a fraction (25%) of the TCR-ß repertoire and that these stressors could increase self-reactivity.-Fonte, C., Kaminski, S., Vanet, A., Lanfumey, L., Cohen-Salmon, C., Ghislin, S., Frippiat, J.-P. Socioenvironmental stressors encountered during spaceflight partially affect the murine TCR-ß repertoire and increase its self-reactivity.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Voo Espacial , Estresse Fisiológico , Estresse Psicológico , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Feminino , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Linfopoese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Linfócitos T/citologia , Linfócitos T/imunologia , Recombinação V(D)J
3.
Artigo em Inglês | MEDLINE | ID: mdl-37080596

RESUMO

BACKGROUND AND OBJECTIVES: Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS: In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS: Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION: Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.


Assuntos
Malária Cerebral , Síndrome de Susac , Camundongos , Animais , Perforina , Doenças Neuroinflamatórias , Células Endoteliais , Camundongos Knockout , Linfócitos T CD8-Positivos , Modelos Animais de Doenças
4.
Behav Brain Res ; 326: 121-131, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28263830

RESUMO

Receptors for glucocorticoid (GR) and corticotropin-releasing hormone (CRH) are largely found in brain sensorimotor structures, particularly in cerebellum, underlining a potential role of stress hormones in the regulation of motor function. Since CRH is involved in neuroplasticity, known for its trophic effect on synapses, we investigated how manipulations in corticosterone serum levels can modulate the CRH system in the cerebellum and affect motor coordination. Corticosterone at doses of either 15 or 30mg/kg was injected in mice and the status of hormonal expression evaluated in cerebellum, hippocampus, and hypothalamus in undisturbed housing conditions or after different behavioral tests. Under both conditions, metabolic activity in numerous brain regions involved in motor functions and emotion was measured by means of cytochrome oxidase (COX) activity labeling. After six consecutive days of corticosterone administration, CRH-R1 transcription was downregulated in hypothalamic and cerebellar regions and hypometabolic changes were observed in mice treated with the higher dose for several limbic and sensorimotor circuitries, notably basal ganglia, deep cerebellar nuclei, and red nucleus. Corticosterone did not modify motor activity, anxiety, and spatial orientation, but decreased latencies before falling from the rotorod and prevented mice from reaching targets in the coat-hanger test. In addition, COX activities were similar to control mice except in ventromedial thalamus and dorsal neostriatum, possibly indicating that physical activity protected brain energy metabolism against the stress hormone. The present findings showed that the CRH/CRH-R1 system might play a role in mediating the effects of stress on cerebellar function, affecting especially motor learning tasks.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Corticosterona/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Glucocorticoides/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Animais , Corticosterona/administração & dosagem , Glucocorticoides/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Dev Comp Immunol ; 53(2): 371-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26277106

RESUMO

Urodele amphibians are an interesting model because although they possess the cardinal elements of the vertebrate immune system, their immune response is apparently subdued. This phenomenon, sometimes regarded as a state of immunodeficiency, has been attributed by some authors to limited antibody diversity. We reinvestigated this issue in Pleurodeles waltl, a metamorphosing urodele, and noted that upsilon transcripts of its IgY repertoire were as diverse as alpha transcripts of the mammalian IgA repertoire. Mu transcripts encoding the IgM repertoire were less diverse, but could confer more plasticity. Both isotypes present potential polyreactive features that may confer urodele antibodies with the ability to bind to a variety of antigens. Finally, we observed additional cysteines in CDR1 and 2 of the IGHV5 and IGHV6 domains, some of which specific to urodeles, that could allow the establishment of a disulfide bond between these CDRs. Together, these data suggest that urodele antibody diversity is not as low as previously thought.


Assuntos
Regiões Determinantes de Complementaridade/genética , Cisteína/genética , Cadeias Pesadas de Imunoglobulinas/genética , Pleurodeles/imunologia , Animais , Diversidade de Anticorpos , Epitopos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imunoglobulina A/genética , Imunoglobulina M/genética , Estágios do Ciclo de Vida , Mamíferos , Pleurodeles/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA