RESUMO
Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.
Assuntos
Archaea , Ciclo Celular , Replicação do DNA , Archaea/metabolismo , Archaea/genética , Ciclo Celular/genética , Divisão Celular , Proteínas Arqueais/metabolismoRESUMO
Nuclear envelope (NE) expansion must be controlled to maintain nuclear shape and function. The nuclear membrane expands massively during closed mitosis, enabling chromosome segregation within an intact NE. Phosphatidic acid (PA) and diacylglycerol (DG) can both serve as biosynthetic precursors for membrane lipid synthesis. How they are regulated in time and space and what the implications are of changes in their flux for mitotic fidelity are largely unknown. Using genetically encoded PA and DG probes, we show that DG is depleted from the inner nuclear membrane during mitosis in the fission yeast Schizosaccharomyces pombe, but PA does not accumulate, indicating that it is rerouted to membrane synthesis. We demonstrate that DG-to-PA conversion catalyzed by the diacylglycerol kinase Dgk1 (also known as Ptp4) and direct glycerophospholipid synthesis from DG by diacylglycerol cholinephosphotransferase/ethanolaminephosphotransferase Ept1 reinforce NE expansion. We conclude that DG consumption through both the de novo pathway and the Kennedy pathway fuels a spike in glycerophospholipid biosynthesis, controlling NE expansion and, ultimately, mitotic fidelity.
Assuntos
Membrana Nuclear , Schizosaccharomyces , Membrana Nuclear/metabolismo , Diglicerídeos/metabolismo , Mitose , Divisão do Núcleo Celular , Schizosaccharomyces/metabolismo , Glicerofosfolipídeos/metabolismoRESUMO
Biological systems are increasingly viewed through a quantitative lens that demands accurate measures of gene expression and local protein concentrations. CRISPR/Cas9 gene tagging has enabled increased use of fluorescence to monitor proteins at or near endogenous levels under native regulatory control. However, owing to typically lower expression levels, experiments using endogenously tagged genes run into limits imposed by autofluorescence (AF). AF is often a particular challenge in wavelengths occupied by commonly used fluorescent proteins (GFP, mNeonGreen). Stimulated by our work in C. elegans, we describe and validate Spectral Autofluorescence Image Correction By Regression (SAIBR), a simple platform-independent protocol and FIJI plug-in to correct for autofluorescence using standard filter sets and illumination conditions. Validated for use in C. elegans embryos, starfish oocytes and fission yeast, SAIBR is ideal for samples with a single dominant AF source; it achieves accurate quantitation of fluorophore signal, and enables reliable detection and quantification of even weakly expressed proteins. Thus, SAIBR provides a highly accessible low-barrier way to incorporate AF correction as standard for researchers working on a broad variety of cell and developmental systems.