Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 150(1): R1, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340493

RESUMO

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.

2.
J Acoust Soc Am ; 138(3): 1627-36, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26428801

RESUMO

The acousto-optic effect, in which an acoustic wave causes variations in the optical index of refraction, imposes a fundamental limitation on the determination of the normal velocity, or normal displacement, distribution on the surface of an acoustic transducer or optically reflecting pellicle by a scanning heterodyne, or homodyne, laser interferometer. A general method of compensation is developed for a pulsed harmonic pressure field, transmitted by an acoustic transducer, in which the laser beam can transit the transducer nearfield. By representing the pressure field by the Rayleigh integral, the basic equation for the unknown normal velocity on the surface of the transducer or pellicle is transformed into a Fredholm equation of the second kind. A numerical solution is immediate when the scanned points on the surface correspond to those of the surface area discretization. Compensation is also made for oblique angles of incidence by the scanning laser beam. The present compensation method neglects edge waves, or those due to boundary diffraction, as well as effects due to baffles, if present. By allowing measurement in the nearfield of the radiating transducer, the method can enable quantification of edge-wave and baffle effects on transducer radiation. A verification experiment has been designed.

3.
J Acoust Soc Am ; 136(4): 1511-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25324055

RESUMO

Measurements of the performance of acoustic transducers, as well as ordinary measurements made with the same, may require discriminating between the farfield, where the field is spherically divergent, and the complementary nearfield, where the field structure is more complicated. The problem is addressed for a planar circular piston projector, with uniform normal velocity distribution, mounted in an infinite planar rigid baffle. The inward-extrapolated farfield pressure amplitude pf is compared with the exact nearfield pressure amplitude pn, modeled by the Rayleigh integral, through the error 20 log |pf /pn|. Three sets of computations are performed for a piston with wavenumber-radius product ka = 10: normalized pressure amplitudes and error versus range at angles corresponding to beam pattern losses of 0, 10, 20, and 30 dB; error versus angle at three ranges, a(2)/λ, πa(2)/λ, and 10a(2)/λ, where λ is the wavelength; and range versus angle for each of two inward-bounded errors, 1 and 0.3 dB. By reciprocity, the results apply equally to the case of a baffled circular piston receiver with uniform sensitivity over the active surface. It is proposed that proximity criteria for measurements of fields associated with circular pistons be established by like modeling, and that a quality factor be assigned to measurements on the basis of computed errors.

4.
J Acoust Soc Am ; 131(5): 3698-709, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559347

RESUMO

Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.

5.
J Acoust Soc Am ; 131(2): 1595-604, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22352529

RESUMO

Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen was instrumented with tourmaline acoustic pressure gauges used as receiving sensors. Gauge implantation near critical tissues was guided by intraoperative, high-resolution, computerized tomography (CT) scanning. Instrumented structures included the melon, nares, ear, thoracic wall, lungs, epaxial muscle, and lower abdomen. The specimen was suspended from a frame equipped with a standard 50.8-mm-diameter spherical transducer used as the acoustic source and additional receiving sensors to monitor the transmitted and external, scattered field. Following immersion, the transducer transmitted pulsed sinusoidal signals at 5, 7, and 10 kHz. Quantitative internal pressure fields are reported for all cases except those in which the gauge failed or no received signal was detected. A full necropsy was performed immediately after the experiment to examine instrumented areas and all major organs. No lesions attributable to acoustic transmissions were found, consistent with the low source level and source-receiver distances.


Assuntos
Golfinhos Comuns/fisiologia , Som/efeitos adversos , Acústica , Animais , Autopsia , Calibragem , Golfinhos Comuns/anatomia & histologia , Pressão , Espectrografia do Som
6.
J Acoust Soc Am ; 127(4): EL153-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20369983

RESUMO

The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described.


Assuntos
Acústica , Comportamento Animal , Peixes/fisiologia , Radar , Comportamento Social , Natação , Acústica/instrumentação , Animais , Oceano Atlântico , Aprendizagem da Esquiva , Desenho de Equipamento , Noruega , Densidade Demográfica , Radar/instrumentação , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Transdutores
8.
J Acoust Soc Am ; 121(3): 1482-90, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17407885

RESUMO

The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5-6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from -43.4 dB at 0.5 kHz to -20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order +/-0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies.

9.
J Acoust Soc Am ; 119(2): 844-56, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16521745

RESUMO

The squid Loligo opalescens is a key species in the nearshore pelagic community of California, supporting the most valuable state marine fishery, yet the stock biomass is unknown. In southern Monterey Bay, extensive beds occur on a flat, sandy bottom, water depths 20-60 m, thus sidescan sonar is a prima-facie candidate for use in rapid, synoptic, and noninvasive surveying. The present study describes development of an acoustic method to detect, identify, and quantify squid egg beds by means of high-frequency sidescan-sonar imagery. Verification of the method has been undertaken with a video camera carried on a remotely operated vehicle. It has been established that sidescan sonar images can be used to predict the presence or absence of squid egg beds. The lower size limit of detectability of an isolated egg bed is about 0.5 m with a 400-kHz sidescan sonar used with a 50-m range when towed at 3 knots. It is possible to estimate the abundance of eggs in a region of interest by computing the cumulative area covered by the egg beds according to the sidescan sonar image. In a selected quadrat one arc second on each side, the estimated number of eggs was 36.5 million.


Assuntos
Acústica , Loligo/fisiologia , Animais , California , Meio Ambiente , Pesqueiros , Óvulo , Água do Mar , Gravação em Vídeo
10.
J Acoust Soc Am ; 117(4 Pt 1): 2013-27, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15898644

RESUMO

Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.

11.
J Acoust Soc Am ; 111(4): 1644-54, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12002847

RESUMO

To establish the validity of the boundary-element method (BEM) for modeling scattering by swimbladder-bearing fish, the BEM is exercised in several ways. In a computation of backscattering by a 50-mm-diam spherical void in sea water at the four frequencies 38.1, 49.6, 68.4, and 120.4 kHz, agreement with the analytical solution is excellent. In computations of target strength as a function of tilt angle for each of 15 surface-adapted gadoids for which the swimbladders were earlier mapped, BEM results are in close agreement with Kirchhoff-approximation-model results at each of the same four frequencies. When averaged with respect to various tilt angle distributions and combined by regression analysis, the two models yield similar results. Comparisons with corresponding values derived from measured target strength functions of the same 15 gadoid specimens are fair, especially for the tilt angle distribution with the greatest standard deviation, namely 16 degrees.

12.
J Acoust Soc Am ; 114(6 Pt 1): 3136-46, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14714796

RESUMO

The depth dependence of fish target strength has mostly eluded experimental investigation because of the need to distinguish it from depth-dependent behavioral effects, which may change the orientation distribution. The boundary-element method (BEM) offers an avenue of approach. Based on detailed morphometric data on 15 gadoid swimbladders, the BEM has been exercised to determine how the orientation dependence of target strength changes with pressure under the assumption that the fish swimbladder remains constant in shape and volume. The backscattering cross section has been computed at a nominal frequency of 38 kHz as a function of orientation for each of three pressures: 1, 11, and 51 atm. Increased variability in target strength and more abundant and stronger resonances are both observed with increasing depth. The respective backscattering cross sections have been averaged with respect to each of four normal distributions of tilt angle, and the corresponding target strengths have been regressed on the logarithm of fish length. The tilt-angle-averaged backscattering cross sections at the highest pressure have also been averaged with respect to frequency over a 2-kHz band for representative conditions of insonification. For all averaging methods, the mean target strength changes only slightly with depth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA