Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33033157

RESUMO

Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.89 micrometers) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet region (i.e., become bluer at shorter wavelengths), then brighten in the visible to near-infrared region, leading to Bennu's moderately blue average color. Craters indicate that the time scale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.

2.
Nat Commun ; 10(1): 1291, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890725

RESUMO

During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s-1 averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 ± 0.52 × 10-6 degrees day-2, likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.

3.
Nat Astron ; 3(4): 332-340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360777

RESUMO

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.

4.
Science ; 355(6332): 1392-1395, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28325842

RESUMO

The Rosetta spacecraft spent ~2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet's landscape. This suggests that most of the major landforms were created early in the comet's current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.

5.
Science ; 354(6319): 1563-1566, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27856846

RESUMO

Carbon dioxide (CO2) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO2 ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO2 ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO2 ice and the depth of the eroded surface layer. We interpret the presence of CO2 ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.

6.
Science ; 354(6319): 1566-1570, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27856849

RESUMO

The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.

7.
Science ; 334(6055): 487-90, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22034428

RESUMO

Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 ± 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.

8.
Science ; 327(5962): 190-3, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20056887

RESUMO

The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote( )imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA