Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nano Lett ; 23(7): 2454-2459, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36926934

RESUMO

Superconductivity in van der Waals materials, such as NbSe2 and TaS2, is fundamentally novel due to the effects of dimensionality, crystal symmetries, and strong spin-orbit coupling. In this work, we perform tunnel spectroscopy on NbSe2 by utilizing MoS2 or hexagonal boron nitride (hBN) as a tunnel barrier. We observe subgap excitations and probe their origin by studying various heterostructure designs. We show that the edge of NbSe2 hosts many defect states, which strongly couple to the superconductor and form Andreev bound states. Furthermore, by isolating the NbSe2 edge we show that the subgap states are ubiquitous in MoS2 tunnel barriers but absent in hBN tunnel barriers, suggesting defects in MoS2 as their origin. Their magnetic nature reveals a singlet- or a doublet-type ground state, and based on nearly vanishing g factors or avoided crossings of subgap excitations, we highlight the role of strong spin-orbit coupling.

2.
Proc Natl Acad Sci U S A ; 117(12): 6417-6423, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152127

RESUMO

Most digital information today is encoded in the magnetization of ferromagnetic domains. The demand for ever-increasing storage space fuels continuous research for energy-efficient manipulation of magnetism at smaller and smaller length scales. Writing a bit is usually achieved by rotating the magnetization of domains of the magnetic medium, which relies on effective magnetic fields. An alternative approach is to change the magnetic state directly by acting on the interaction between magnetic moments. Correlated oxides are ideal materials for this because the effects of a small external control parameter are amplified by the electronic correlations. Here, we present a radical method for reversible, light-induced tuning of ferromagnetism at room temperature using a halide perovskite/oxide perovskite heterostructure. We demonstrate that photoinduced charge carriers from the [Formula: see text] photovoltaic perovskite efficiently dope the thin [Formula: see text] film and decrease the magnetization of the ferromagnetic state, allowing rapid rewriting of the magnetic bit. This manipulation could be accomplished at room temperature; hence this opens avenues for magnetooptical memory devices.

3.
Proc Natl Acad Sci U S A ; 117(47): 29555-29560, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33154159

RESUMO

The exotic properties of quantum spin liquids (QSLs) have continually been of interest since Anderson's 1973 ground-breaking idea. Geometrical frustration, quantum fluctuations, and low dimensionality are the most often evoked material's characteristics that favor the long-range fluctuating spin state without freezing into an ordered magnet or a spin glass at low temperatures. Among the few known QSL candidates, organic crystals have the advantage of having rich chemistry capable of finely tuning their microscopic parameters. Here, we demonstrate the emergence of a QSL state in [EDT-TTF-CONH2]2 +[[Formula: see text]] (EDT-BCO), where the EDT molecules with spin-1/2 on a triangular lattice form layers which are separated by a sublattice of BCO molecular rotors. By several magnetic measurements, we show that the subtle random potential of frozen BCO Brownian rotors suppresses magnetic order down to the lowest temperatures. Our study identifies the relevance of disorder in the stabilization of QSLs.

4.
Nano Lett ; 22(13): 5510-5515, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35736540

RESUMO

Proximity-induced superconductivity in a ferromagnet can induce Cooper pairs with a finite center-of-mass momentum and stabilize Josephson junctions (JJs) with π phase difference in superconductor-ferromagnet-superconductor heterostructures. The emergence of two-dimensional layered superconducting and magnetic materials promises a new platform for realizing π JJs with atomically sharp interfaces. Here we demonstrate a thickness-driven 0-π transition in JJs made of NbSe2 (an Ising superconductor) and Cr2Ge2Te6 (a ferromagnetic semiconductor). By systematically increasing the Cr2Ge2Te6 weak link thickness, we observe a vanishing supercurrent at a critical thickness of ∼8 nm, followed by a re-entrant supercurrent. Near the critical thickness, we further observe unusual supercurrent interference patterns with vanishing critical current around zero in-plane magnetic field. They signify the formation of 0-π JJs (with both 0 and π regions), likely induced by the nanoscale magnetic domains in Cr2Ge2Te6.

5.
Nano Lett ; 22(23): 9389-9395, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36416790

RESUMO

2H-NbSe2 is a prototypical charge-density-wave (CDW) system, exhibiting such a symmetry-breaking quantum ground state in its bulk and down to a single-atomic-layer limit. However, how this state depends on dimensionality and what governs the dimensionality effect remain controversial. Here, we experimentally demonstrate a robust 3 × 3 CDW phase in both freestanding and substrate-supported bilayer NbSe2, far above the bulk transition temperature. We exclude environmental effects and reveal a strong temperature and thickness dependence of Raman intensity from an axially vibrating A1g phonon mode, involving Se ions. Using first-principles calculations, we show that these result from a delicate but profound competition between the intra- and interlayer bonding formed between Se-pz orbitals. Our results suggest the crucial role of Se out-of-plane displacement in driving the CDW distortion, revealing the Se-dominated dimensionality effect and establishing a new perspective on the chemical bonding and mechanical stability in layered CDW materials.

6.
Inorg Chem ; 60(1): 286-291, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33320648

RESUMO

The crystals of a novel family of rare-earth borate-nitrate compounds, Ln7(BO3)3(NO3)N3O (Ln = Pr, Nd), were grown at high-pressure in KAs flux and their crystal structure was determined. The new type of the crystalline structure consists of parallel chains of Ln6 octahedra connected by common faces and forming the channels with the NO3 triangular planar motifs in the center, and isolated OLn4 tetrahedra separated from each other by N3 triangular motifs. Each NO3 triangle is in fact a part of rather unusual (NB3O12) block consisting of 3 distorted BO4 tetrahedra around central nitrogen atom. Under near-infrared (NIR) (λex = 1064 nm) excitation, both compounds revealed a strong signal of second harmonic generation (SHG) at half the excitation wavelength (λem = 532 nm), which is in agreement with their noncentrosymmetric structure. In addition, a photon up-conversion (UC) emission at λem = 880 nm was observed for microcrystals of Nd7(BO3)3(NO3)N3O, which was assigned to the UC process occurring within the 4f electronic manifold of Nd3+ ions. The dual-emission (SHG/UC) properties of Nd7(BO3)3(NO3)N3O microcrystals, concomitant with the absence of photobleaching, makes them prospective candidates for microscopic probes in biological studies.

7.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445269

RESUMO

Under stress conditions, elevated levels of cellular reactive oxygen species (ROS) may impair crucial cellular structures. To counteract the resulting oxidative damage, living cells are equipped with several defense mechanisms, including photoprotective functions of specific proteins. Here, we discuss the plausible ROS scavenging mechanisms by the enhanced green fluorescent protein, EGFP. To check if this protein could fulfill a photoprotective function, we employed electron spin resonance (ESR) in combination with spin-trapping. Two organic photosensitizers, rose bengal and methylene blue, as well as an inorganic photocatalyst, nano-TiO2, were used to photogenerate ROS. Spin-traps, TMP-OH and DMPO, and a nitroxide radical, TEMPOL, served as molecular targets for ROS. Our results show that EGFP quenches various forms of ROS, including superoxide radicals and singlet oxygen. Compared to the three proteins PNP, papain, and BSA, EGFP revealed high ROS quenching ability, which suggests its photoprotective role in living systems. Damage to the EGFP chromophore was also observed under strong photo-oxidative conditions. This study contributes to the discussion on the protective function of fluorescent proteins homologous to the green fluorescent protein (GFP). It also draws attention to the possible interactions of GFP-like proteins with ROS in systems where such proteins are used as biological markers.


Assuntos
Proteínas de Fluorescência Verde/química , Fotodegradação , Oxigênio Singlete/química , Superóxidos/química , Espectroscopia de Ressonância de Spin Eletrônica
8.
J Am Chem Soc ; 142(49): 20624-20630, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236891

RESUMO

Recent interest in potassium-doped p-terphenyl has been fueled by reports of superconductivity at Tc values surprisingly high for organic compounds. Despite these interesting properties, studies of the structure-function relationships within these materials have been scarce. Here, we isolate a phase-pure crystal of potassium-doped p-terphenyl: [K(222)]2[p-terphenyl3]. Emerging antiferromagnetism in the anisotropic structure is studied in depth by magnetometry and electron spin resonance. Combining these experimental results with density functional theory calculations, we describe the antiferromagnetic coupling in this system that occurs in all 3 crystallographic directions. The strongest coupling was found along the ends of the terphenyls, where the additional electron on neighboring p-terphenyls antiferromagnetically couple. This delocalized bonding interaction is reminiscent of the doubly degenerate resonance structure depiction of polyacetylene. These findings hint toward magnetic fluctuation-induced superconductivity in potassium-doped p-terphenyl, which has a close analogy with high Tc cuprate superconductors. The new approach described here is very versatile as shown by the preparation of two additional salts through systematic changing of the building blocks.

9.
Adv Funct Mater ; 30(40): 2004615, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32837497

RESUMO

In the last couple decades, several viral outbreaks resulting in epidemics and pandemics with thousands of human causalities have been witnessed. The current Covid-19 outbreak represents an unprecedented crisis. In stopping the virus' spread, it is fundamental to have personal protective equipment and disinfected surfaces. Here, the development of a TiO2 nanowires (TiO2NWs) based filter is reported, which it is believed will work extremely well for personal protective equipment (PPE), as well as for a new generation of air conditioners and air purifiers. Its efficiency relies on the photocatalytic generation of high levels of reactive oxygen species (ROS) upon UV illumination, and on a particularly high dielectric constant of TiO2, which is of paramount importance for enhanced wettability by the water droplets carrying the germs. The filter pore sizes can be tuned by processing TiO2NWs into filter paper. The kilogram-scale production capability of TiO2NWs gives credibility to its massive application potentials.

10.
Soft Matter ; 16(17): 4234-4242, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297892

RESUMO

By a micro-experimental methodology, we study the ongoing molecular process inside coarse fibrin networks by means of microrheology. We made these networks gelate around a probe microbead, allowing us to observe a temporal evolution compatible with the well-known molecular formation of fibrin networks in four steps: monomer, protofibril, fiber and network. Thanks to the access that optical-trapping interferometry provides to the short-time scale on the bead's Brownian motion, we observe a Kelvin-Voigt mechanical behavior from low to high frequencies, range not available in conventional rheometry. We exploit that mechanical model for obtaining the characteristic lengths of the filamentous structures composing these fibrin networks, whose obtained values are compatible with a non-affine behavior characterized by bending modes. At very long gelation times, a ω7/8 power-law is observed in the loss modulus, theoretically related with the longitudinal response of the molecular structures.

11.
Molecules ; 25(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947578

RESUMO

We studied the effect of the exposure of human A549 and SH-SY5Y cell lines to aqueous solutions of organic/inorganic halide perovskites CH3NH3PbI3 (MAPbI3) and CH3NH3SnI3 (MASnI3) at the molecular level by using Fourier transform infrared microspectroscopy. We monitored the infrared spectra of some cells over a few days following exposure to the metals and observed the spectroscopic changes dominated by the appearance of a strong band at 1627 cm-1. We used Infrared (IR) mapping to show that this change was associated with the cell itself or the cellular membrane. It is unclear whether the appearance of the 1627 cm-1 band and heavy metal exposure are related by a direct causal relationship. The spectroscopic response of exposure to MAPbI3 and MASnI3 was similar, indicating that it may arise from a general cellular response to stressful environmental conditions. We used 2D correlation spectroscopy (2DCOS) analysis to interpret spectroscopic changes. In a novel application of the method, we demonstrated the viability of 2DCOS for band assignment in spatially resolved spectra. We assigned the 1627 cm-1 band to the accumulation of an abundant amide or amine containing compound, while ruling out other hypotheses. We propose a few tentative assignments to specific biomolecules or classes of biomolecules, although additional biochemical characterization will be necessary to confirm such assignments.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Iodetos/química , Chumbo/química , Neoplasias Pulmonares/patologia , Metilaminas/química , Neuroblastoma/patologia , Óxidos/química , Óxidos/farmacologia , Titânio/química , Titânio/farmacologia , Sobrevivência Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Compostos de Estanho/química , Células Tumorais Cultivadas
12.
Nat Mater ; 17(6): 504-508, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713039

RESUMO

Time reversal and spatial inversion are two key symmetries for conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity 1 . Breaking inversion symmetry can lead to mixed-parity Cooper pairing and unconventional superconducting properties1-5. Two-dimensional (2D) NbSe2 has emerged as a new non-centrosymmetric superconductor with the unique out-of-plane or Ising spin-orbit coupling (SOC)6-9. Here we report the observation of an unusual continuous paramagnetic-limited superconductor-normal metal transition in 2D NbSe2. Using tunelling spectroscopy under high in-plane magnetic fields, we observe a continuous closing of the superconducting gap at the upper critical field at low temperatures, in stark contrast to the abrupt first-order transition observed in BCS thin-film superconductors10-12. The paramagnetic-limited continuous transition arises from a large spin susceptibility of the superconducting phase due to the Ising SOC. The result is further supported by self-consistent mean-field calculations based on the ab initio band structure of 2D NbSe2. Our findings establish 2D NbSe2 as a promising platform to explore novel spin-dependent superconducting phenomena and device concepts 1 , such as equal-spin Andreev reflection 13 and topological superconductivity14-16.

13.
J Nanosci Nanotechnol ; 19(1): 502-508, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327063

RESUMO

Homogeneous and stable inorganic coating of SiO2, Al2O3 and TiO2 was obtained on the surface of multiwall carbon nanotubes (MWNTs) by mechanically mixing them with precursor compounds in a planetary ball mill and by subsequent hydrolysis. Detailed studies by means of transmission and scanning electron microscopy revealed that the milling time as well as the number of balls significantly affects the homogeneity of the layer formed. Our results demonstrate that planetary ball milling can be an effective and low-cost process for the production of homogenous coating of oxides on MWNTs in a large-scale.

14.
Nat Mater ; 15(2): 154-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657327

RESUMO

Recent progress in the field of topological states of matter has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs ,,,), followed by closely related ternary compounds and predictions of several weak TIs (refs ,,). However, both the conceptual richness of Z2 classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z2 topological insulator is theoretically predicted and experimentally confirmed in the ß-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of ß-Bi4I4, characterized by Z2 invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the  point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction.

15.
Langmuir ; 33(36): 9043-9049, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28796523

RESUMO

Simple, rapid, and inexpensive fabrication of self-cleaning glass surfaces based on wet chemical deposition of H2Ti3O7 (trititanate) and subsequent transformation of it into TiO2 (anatase) nanowires on pristine glass surfaces is reported. Despite the low, 55%, surface coverage, the nanowire roughened glass surface showed self-cleaning properties comparable to much thicker, over 100-nm-thick, TiO2 nanoparticle coated glasses. The superwettable surface showed 12° contact angle. Moreover, ultraviolet (UV) and natural light activated photocatalysis remained effective at enhancing the self-cleaning process in the case of the TiO2 nanowire coated glass. Time-resolved study of the water droplet spread in millisecond time scales revealed that capillary forces induced by the random nanowire network significantly enhance the water sheeting effect of these textured glass surfaces. Time-resolved experiments revealed that the spreading velocity of the droplets were enhanced by 19% for the TiO2 nanowire roughened surface and reached a v0 = 508 mm/s initial spreading speed. Outdoor experiments validated the concept that TiO2 nanowire coated glass possess self-cleaning properties with significantly reduced titania content compared to nanoparticle based films.

16.
Langmuir ; 33(38): 9750-9758, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28829607

RESUMO

The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.

17.
Nature ; 478(7367): 85-8, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979048

RESUMO

Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations. This hydrodynamic 'memory' translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin's pioneering experiments on Brownian motion, direct experimental observation of this colour is still elusive. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere's positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors, our results reveal that the particle-fluid-trap system can be considered a nanomechanical resonator in which the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications.


Assuntos
Microesferas , Movimento (Física) , Acetona/química , Simulação por Computador , Difusão , Fricção , Dispositivos Lab-On-A-Chip , Pinças Ópticas , Solventes/química , Temperatura , Fatores de Tempo , Triazinas/química , Viscosidade
18.
Acta Biol Hung ; 68(3): 279-289, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28901808

RESUMO

Arctodiaptomus spinosus (Daday, 1891) is a characteristic species of the soda pan zooplankton in the Great Hungarian Plain. The biogeographical distribution of the species is interesting, since its range expands from the Pannonian Biogeographic region to the other side of the Carpathians, occurring in saline lakes in Eastern Anatolia, Armenia, Iran and in temporary waters in Ukraine. Our investigations focused on the morphometric characteristics and the COI haplotype diversity of four Hungarian populations in the Kiskunság area. We detected substantial morphological differences between the Böddi-szék population and the rest of the sampling sites, however considerable differences were not observable in the COI haplotypes in the populations. The 20 animals investigated for COI haplotypes belonged to the same haplotype network. Tajima's D indicated departures from the neutral Wright - Fisher population model and suggested population expansion. The genetic composition of Arctodiaptomus spinosus populations in the Kiskunság area is rather uniform.


Assuntos
Copépodes/anatomia & histologia , Copépodes/genética , DNA Mitocondrial/genética , Variação Genética/genética , Haplótipos/genética , Animais , Hungria , Especificidade da Espécie
19.
Phys Rev Lett ; 117(10): 106801, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636485

RESUMO

Recent experimental advances in atomically thin transition metal dichalcogenide (TMD) metals have unveiled a range of interesting phenomena including the coexistence of charge-density-wave (CDW) order and superconductivity down to the monolayer limit. The atomic thickness of two-dimensional (2D) TMD metals also opens up the possibility for control of these electronic phase transitions by electrostatic gating. Here, we demonstrate reversible tuning of superconductivity and CDW order in model 2D TMD metal NbSe_{2} by an ionic liquid gate. A variation up to ∼50% in the superconducting transition temperature has been observed. Both superconductivity and CDW order can be strengthened (weakened) by increasing (reducing) the carrier density in 2D NbSe_{2}. The doping dependence of these phase transitions can be understood as driven by a varying electron-phonon coupling strength induced by the gate-modulated carrier density and the electronic density of states near the Fermi surface.

20.
Chemistry ; 21(2): 770-7, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25394656

RESUMO

The electron spin lifetime in an assembly of chemically synthesized graphene sheets was found to be extremely sensitive to oxygen. Introducing small concentrations of physisorbed O2 onto the graphene surface reduced the exceptionally long 140 ns electron spin lifetime by an order of magnitude. This effect was completely reversible: Removing the O2 by using a dynamic vacuum restored the spin lifetime. The presence of covalently bound oxygen also decreased the electron spin lifetime in graphene, although to a far lesser extent compared to physisorbed O2 . The conduction electrons in graphene were found to play a significant role by counter-balancing the spin depolarization caused by oxygen molecules. Our results highlight the importance of chemical environment control and device packing in practical graphene-based spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA