RESUMO
Phosphorescent organic light-emitting diodes (PHOLEDs) feature high efficiency1,2, brightness and colour tunability suitable for both display and lighting applications3. However, overcoming the short operational lifetime of blue PHOLEDs remains one of the most challenging high-value problems in the field of organic electronics. Their short lifetimes originate from the annihilation of high-energy, long-lived blue triplets that leads to molecular dissociation4-7. The Purcell effect, the enhancement of the radiative decay rate in a microcavity, can reduce the triplet density and, hence, the probability of destructive high-energy triplet-polaron annihilation (TPA)5,6 and triplet-triplet annihilation (TTA) events4,5,7,8. Here we introduce the polariton-enhanced Purcell effect in blue PHOLEDs. We find that plasmon-exciton polaritons9 (PEPs) substantially increase the strength of the Purcell effect and achieve an average Purcell factor (PF) of 2.4 ± 0.2 over a 50-nm-thick emission layer (EML) in a blue PHOLED. A 5.3-fold improvement in LT90 (the time for the PHOLED luminance to decay to 90% of its initial value) of a cyan-emitting Ir-complex device is achieved compared with its use in a conventional PHOLED. Shifting the chromaticity coordinates to (0.14, 0.14) and (0.15, 0.20) into the deep blue, the Purcell-enhanced devices achieve 10-14 times improvement over similarly deep-blue PHOLEDs, with one structure reaching the longest Ir-complex device lifetime of LT90 = 140 ± 20 h reported so far10-21. The polariton-enhanced Purcell effect and microcavity engineering provide new possibilities for extending deep-blue PHOLED lifetimes.
RESUMO
Controlling matter-light interactions with cavities is of fundamental importance in modern science and technology1. This is exemplified in the strong-coupling regime, where matter-light hybrid modes form, with properties that are controllable by optical-wavelength photons2,3. By contrast, matter excitations on the nanometre scale are harder to access. In two-dimensional van der Waals heterostructures, a tunable moiré lattice potential for electronic excitations may form4, enabling the generation of correlated electron gases in the lattice potentials5-9. Excitons confined in moiré lattices have also been reported10,11, but no cooperative effects have been observed and interactions with light have remained perturbative12-15. Here, by integrating MoSe2-WS2 heterobilayers in a microcavity, we establish cooperative coupling between moiré-lattice excitons and microcavity photons up to the temperature of liquid nitrogen, thereby integrating versatile control of both matter and light into one platform. The density dependence of the moiré polaritons reveals strong nonlinearity due to exciton blockade, suppressed exciton energy shift and suppressed excitation-induced dephasing, all of which are consistent with the quantum confined nature of the moiré excitons. Such a moiré polariton system combines strong nonlinearity and microscopic-scale tuning of matter excitations using cavity engineering and long-range light coherence, providing a platform with which to study collective phenomena from tunable arrays of quantum emitters.
RESUMO
Thermophotovoltaic cells are similar to solar cells, but instead of converting solar radiation to electricity, they are designed to utilize locally radiated heat. Development of high-efficiency thermophotovoltaic cells has the potential to enable widespread applications in grid-scale thermal energy storage1,2, direct solar energy conversion3-8, distributed co-generation9-11 and waste heat scavenging12. To reach high efficiencies, thermophotovoltaic cells must utilize the broad spectrum of a radiative thermal source. However, most thermal radiation is in a low-energy wavelength range that cannot be used to excite electronic transitions and generate electricity. One promising way to overcome this challenge is to have low-energy photons reflected and re-absorbed by the thermal emitter, where their energy can have another chance at contributing towards photogeneration in the cell. However, current methods for photon recuperation are limited by insufficient bandwidth or parasitic absorption, resulting in large efficiency losses relative to theoretical limits. Here we demonstrate near-perfect reflection of low-energy photons by embedding a layer of air (an air bridge) within a thin-film In0.53Ga0.47As cell. This result represents a fourfold reduction in parasitic absorption relative to existing thermophotovoltaic cells. The resulting gain in absolute efficiency exceeds 6 per cent, leading to a very high power conversion efficiency of more than 30 per cent, as measured with an approximately 1,455-kelvin silicon carbide emitter. As the out-of-band reflectance approaches unity, the thermophotovoltaic efficiency becomes nearly insensitive to increasing cell bandgap or decreasing emitter temperature. Accessing this regime may unlock a range of possible materials and heat sources that were previously inaccessible to thermophotovoltaic energy conversion.
RESUMO
For organic photovoltaic (OPV) devices to achieve consistent performance and long operational lifetimes, organic semiconductors must be processed with precise control over their purity, composition, and structure. This is particularly important for high volume solar cell manufacturing where control of materials quality has a direct impact on yield and cost. Ternary-blend OPVs containing two acceptor-donor-acceptor (A-D-A)-type nonfullerene acceptors (NFAs) and a donor have proven to be an effective strategy to improve solar spectral coverage and reduce energy losses beyond that of binary-blend OPVs. Here, we show that the purity of such a ternary is compromised during blending to form a homogeneously mixed bulk heterojunction thin film. We find that the impurities originate from end-capping C=C/C=C exchange reactions of A-D-A-type NFAs, and that their presence influences both device reproducibility and long-term reliability. The end-capping exchange results in generation of up to four impurity constituents with strong dipolar character that interfere with the photoinduced charge transfer process, leading to reduced charge generation efficiency, morphological instabilities, and an increased vulnerability to photodegradation. As a consequence, the OPV efficiency falls to less than 65% of its initial value within 265 h when exposed to up to 10 suns intensity illumination. We propose potential molecular design strategies critical to enhancing the reproducibility as well as reliability of ternary OPVs by avoiding end-capping reactions.
RESUMO
Organic photovoltaic cells are now approaching commercially viable efficiencies, particularly for applications that make use of their unique potential for flexibility and semitransparency1-3. However, their reliability remains a major concern, as even the most stable devices reported so far degrade within only a few years4-8. This has led to the belief that short operational lifetimes are an intrinsic disadvantage of devices that are fabricated using weakly bonded organic materials-an idea that persists despite the rapid growth and acceptance of organic light-emitting devices, which can achieve lifetimes of several million hours9. Here we study an extremely stable class of thermally evaporated single-junction organic photovoltaic cells. We accelerated the ageing process by exposing the packaged cells to white-light illumination intensities of up to 37 Suns. The cells maintained more than 87 per cent of their starting efficiency after exposure for more than 68 days. The degradation rate increases superlinearly with intensity, leading to an extrapolated intrinsic lifetime, T80, of more than 4.9 × 107 hours, where T80 is the time taken for the power conversion efficiency to decrease to 80 per cent of its initial value. This is equivalent to 27,000 years outdoors. Additionally, we subjected a second group of organic photovoltaic cells to 20 Suns of ultraviolet illumination (centred at 365 nanometres) for 848 hours, a dose that would take 1.7 × 104 hours (9.3 years) to accumulate outdoors. No efficiency loss was observed over the duration of the test. Overall, we find that organic solar cells packaged in an inert atmosphere can be extremely stable, which is promising for their future use as a practical energy-generation technology.
RESUMO
Recent advances in thermophotovoltaic (TPV) power generation have produced notable gains in efficiency, particularly at very high emitter temperatures. However, there remains substantial room for improving TPV conversion of waste, solar, and nuclear heat streams at temperatures below 1,100°C. Here, we demonstrate the concept of transmissive spectral control that enables efficient recuperation of below-bandgap photons by allowing them to transmit through the cell to be absorbed by a secondary emitter. We fabricate a semitransparent TPV cell consisting of a thin InGaAs-InP heterojunction membrane supported by an infrared-transparent heat-conducting substrate. The device absorbs less than 1% of below-bandgap radiation, resulting in a TPV efficiency of 32.5% at an emitter temperature of 1,036°C. To our knowledge, this represents an 8% absolute improvement (~33% relative) in efficiency relative to the best TPV devices at such low temperatures. By enabling near-zero photon loss, the semitransparent architecture facilitates high TPV efficiencies over a wide range of applications.
Assuntos
Temperatura Baixa , Temperatura Alta , TemperaturaRESUMO
The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.
RESUMO
A series of bimetallic carbene-metal-amide (cMa) complexes have been prepared with bridging biscarbene ligands to serve as a model for the design of luminescent materials with large oscillator strengths and small energy differences between the singlet and triplet states (ΔEST). The complexes have a general structure (R2N)Au(:carbeneâcarbene:)Au(NR2). The bimetallic complexes show solvation-dependent absorption and emission that is analyzed in detail. It is found that the molar absorptivity of the bimetallic complexes is correlated with the energy barrier to rotation of the metal-ligand bond. The bimetallic cMa complexes also exhibit short emission lifetimes (τ = 200-300 ns) with high photoluminescence efficiencies (ΦPL > 95%). The radiative rates of bimetallic cMa complexes are 3-4 times faster than that of the corresponding monometallic complexes. Analysis of temperature-dependent luminescence data indicates that the lifetime for the singlet state (τS1) of bimetallic cMa complexes is near 12 ns with a ΔEST of 40-50 meV. The presented compounds provide a general design for cMa complexes to achieve small values for ΔEST while retaining high radiative rates. Solution-processed organic light-emitting devices (OLEDs) made using two of the complexes as luminescent dopants show high efficiency and low roll-off at high luminance.
RESUMO
We derive the thermodynamic limit for organic light-emitting diodes (OLEDs), and show that strong exciton binding in these devices requires a higher voltage to achieve the same luminance as a comparable inorganic LED. The OLED overpotential, which does not reduce the power conversion efficiency, is minimized by having a small exciton binding energy, a long exciton lifetime, and a large Langevin coefficient for electron-hole recombination. Based on these results, it seems likely that the best phosphorescent and thermally activated delayed fluorescence OLEDs reported to date approach their thermodynamic limit. The framework developed here is broadly applicable to other excitonic materials, and should therefore help guide the development of low voltage LEDs for display and solid-state lighting applications.
Assuntos
Elétrons , TermodinâmicaRESUMO
Semitransparent organic photovoltaic cells (ST-OPVs) are emerging as a solution for solar energy harvesting on building facades, rooftops, and windows. However, the trade-off between power-conversion efficiency (PCE) and the average photopic transmission (APT) in color-neutral devices limits their utility as attractive, power-generating windows. A color-neutral ST-OPV is demonstrated by using a transparent indium tin oxide (ITO) anode along with a narrow energy gap nonfullerene acceptor near-infrared (NIR) absorbing cell and outcoupling (OC) coatings on the exit surface. The device exhibits PCE = 8.1 ± 0.3% and APT = 43.3 ± 1.2% that combine to achieve a light-utilization efficiency of LUE = 3.5 ± 0.1%. Commission Internationale d'eclairage chromaticity coordinates of (0.38, 0.39), a color-rendering index of 86, and a correlated color temperature of 4,143 K are obtained for simulated AM1.5 illumination transmitted through the cell. Using an ultrathin metal anode in place of ITO, we demonstrate a slightly green-tinted ST-OPV with PCE = 10.8 ± 0.5% and APT = 45.7 ± 2.1% yielding LUE = 5.0 ± 0.3% These results indicate that ST-OPVs can combine both efficiency and color neutrality in a single device.
RESUMO
Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes, we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggest that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.
Assuntos
Peste , Yersinia pestis , DNA , Genômica , Humanos , Pandemias/história , Peste/genética , Yersinia pestis/genéticaRESUMO
Optoelectronic circuits in 3D shapes with large deformations can offer additional functionalities inaccessible to conventional planar electronics based on 2D geometries constrained by conventional photolithographic patterning processes. A light-sensing focal plane array (FPA) used in imagers is one example of a system that can benefit from fabrication on curved surfaces. By mimicking the hemispherical shape of the retina in the human eye, a hemispherical FPA provides a low-aberration image with a wide field of view. Due to the inherently high value of such applications, intensive efforts have been devoted to solving the problem of transforming a circuit fabricated on a flat wafer surface to an arbitrary shape without loss of performance or distorting the linear layouts that are the natural product of this fabrication paradigm. Here we report a general approach for fabricating electronic circuits and optoelectronic devices on nondevelopable surfaces by introducing shear slip of thin-film circuit components relative to the distorting substrate. In particular, we demonstrate retina-like imagers that allow for a topological transformation from a plane to a hemisphere without changing the relative positions of the pixels from that initially laid out on a planar surface. As a result, the resolution of the imager, particularly in the foveal region, is not compromised by stretching or creasing that inevitably results in transforming a 2D plane into a 3D geometry. The demonstration provides a general strategy for realizing high-density integrated circuits on randomly shaped, nondevelopable surfaces.
RESUMO
Over the past 3 decades, there has been a vast expansion of research in both tissue engineering and organic electronics. Although the two fields have interacted little, the materials and fabrication technologies which have accompanied the rise of organic electronics offer the potential for innovation and translation if appropriately adapted to pattern biological materials for tissue engineering. In this work, we use two organic electronic materials as adhesion points on a biocompatible poly(p-xylylene) surface. The organic electronic materials are precisely deposited via vacuum thermal evaporation and organic vapor jet printing, the proven, scalable processes used in the manufacture of organic electronic devices. The small molecular-weight organics prevent the subsequent growth of antifouling polyethylene glycol methacrylate polymer brushes that grow within the interstices between the molecular patches, rendering these background areas both protein and cell resistant. Last, fibronectin attaches to the molecular patches, allowing for the selective adhesion of fibroblasts. The process is simple, reproducible, and promotes a high yield of cell attachment to the targeted sites, demonstrating that biocompatible organic small-molecule materials can pattern cells at the microscale, utilizing techniques widely used in electronic device fabrication.
Assuntos
Materiais Biocompatíveis , Eletrônica , Materiais Biocompatíveis/toxicidade , Engenharia TecidualRESUMO
We determine precise nanoscale information about the morphologies of several organic thin film structures using Fourier plane imaging microscopy (FIM). We used FIM microscopy to detect the orientation of molecular transition dipole moments from an extremely low density of luminescent dye molecules, which we call "morphology sensors". The orientation of the sensor molecules is driven by the local film structure and thus can be used to determine details of the host morphology without influencing it. We use symmetric planar phosphorescent dye molecules as the sensors that are deposited into the bulk of organic film hosts during the growth. We demonstrate morphological mapping with a depth resolution to a few Ångstroms that is limited by the ability to determine thickness during deposition, along with an in-plane resolution limited by optical diffraction. Furthermore, we monitor morphological changes arising from thermal annealing of metastable organic films that are commonly employed in photonic devices.
RESUMO
Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean.
Assuntos
Caniformia/microbiologia , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Tuberculose/história , Tuberculose/microbiologia , Zoonoses/história , Zoonoses/microbiologia , Animais , Osso e Ossos/microbiologia , Europa (Continente)/etnologia , Genômica , História Antiga , Migração Humana/história , Humanos , Peru , Filogenia , Tuberculose/transmissão , Zoonoses/transmissãoRESUMO
Ternary blend organic photovoltaics (OPVs) have been introduced to improve solar spectral absorption and reduce energy losses beyond that of binary blend OPVs, but the difficulties in simultaneously optimizing the morphology of three molecular components result in devices that have generally exhibited performance inferior to that of analogous binary OPVs. Here, we introduce a small molecule-based biternary OPV comprising two individual, vacuum-deposited binary bulk heterojunctions fused at a planar junction without component intermixing. In contrast to previous reports where the open circuit voltage (VOC) of a conventional, blended ternary cell lies between those of the individual binaries, the VOC of the biternary OPV corresponds to one of the constituent binaries, depending on the order in which they are stacked relative to the anode. Additionally, dipole-induced energy-level realignment between the two binary segments necessary to achieve maximum efficiency is observed only when using donor-acceptor-acceptor' dipolar donors in the photoactive heterojunctions. The optimized biternary OPV shows improved performance as compared to its two constituent binary OPVs, achieving a power conversion efficiency of 10.6 ± 0.3% under AM 1.5G 1 sun (100 mW/cm2) simulated illumination with VOC = 0.94 ± 0.01 V, a short circuit current density of 16.0 ± 0.5 mA cm-2, and a fill factor of 0.70 ± 0.01.
RESUMO
A series of six luminescent two-coordinate Cu(I) complexes were investigated bearing nonconventional N-heterocyclic carbene ligands, monoamido-aminocarbene (MAC*) and diamidocarbene (DAC*), along with carbazolyl (Cz) as well as mono- and dicyano-substituted Cz derivatives. The emission color can be systematically varied over 270 nm, from violet to red, through proper choice of the acceptor (carbene) and donor (carbazolyl) groups. The compounds exhibit photoluminescent quantum efficiencies up to 100% in fluid solution and polystyrene films with short decay lifetimes (τ ≈ 1 µs). The radiative rate constants for the Cu(I) complexes ( kr = 105-106 s-1) are comparable to state of the art phosphorescent emitters with noble metals such as Ir and Pt. All complexes show strong solvatochromism due to the large dipole moment of the ground states and the transition dipole moment that is in the opposite direction. Temperature-dependent studies of (MAC*)Cu(Cz) reveal a small energy separation between the lowest singlet and triplet states (Δ ES1-T1 = 500 cm-1) and an exceptionally large zero-field splitting (ZFS = 85 cm-1). Organic light-emitting diodes (OLEDs) fabricated with (MAC*)Cu(Cz) as a green emissive dopant have high external quantum efficiencies (EQE = 19.4%) and brightness of 54â¯000 cd/m2 with modest roll-off at high currents. The complex can also serve as a neat emissive layer to make highly efficient OLEDs (EQE = 16.3%).
RESUMO
Experimental and theoretical approaches are used to understand the role of nanomorphology on exciton dissociation and charge collection at dilute donor-acceptor (D-A) organic heterojunctions (HJs). Specifically, two charge transfer (CT) states in D-A mixed HJs comprising nanocrystalline domains of tetraphenyldibenzoperiflanthene (DBP) as the donor and C70 as the acceptor are unambiguously related to the nanomorphology of the mixed layer. Alternating DBP:C70 multilayer stacks are used to identify and control the optical properties of the CT states, as well as to simulate the dilute mixed heterojunctions. A kinetic Monte Carlo model along with photoluminescence spectroscopy and scanning transmission electron microscopy are used to quantitatively evaluate the layer morphology under various growth conditions. As a result, we are able to understand the counterintuitive observation of high charge extraction efficiency and device performance of DBP:C70 mixed layer photovoltaics at surprisingly low (â¼10%) donor concentrations.
RESUMO
We investigate hybrid charge transfer exciton (HCTE) confinement in organic-inorganic (OI) quantum wells (QWs) comprising a thin InGaN layer bound on one side by GaN and on the other by the organic semiconductors, tetraphenyldibenzoperiflanthene (DBP) or 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP). A binding energy of 10 meV is calculated for the Coulombically bound free HCTE state between a delocalized electron in GaN and a hole localized in DBP. The binding energy of the HCTE increases to 165 meV when the electron is confined to a 1.5 nm In0.21Ga0.79N QW (HCTEQW). The existence of the HCTEQW is confirmed by measuring the voltage-dependent DBP exciton dissociation yield at the OI heterojunction in the QW devices that decrease with increasing In concentration and decreasing electric field, matching the trends predicted by Poole-Frenkel emission. Combining spectroscopic measurements with optical models, we find that 14 ± 3% of the excitons that reach the GaN/DBP heterojunction form HCTEs and dissociate into free charges, while the remainder recombine. A high nonradiative recombination rate through defect states at the heterointerface account for the lack of observation of HCTEQW photoluminescence from GaN/InGaN/CBP QWs at temperatures as low as 10 K.