Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 181(4): 774-783.e5, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413298

RESUMO

A visual cortical prosthesis (VCP) has long been proposed as a strategy for restoring useful vision to the blind, under the assumption that visual percepts of small spots of light produced with electrical stimulation of visual cortex (phosphenes) will combine into coherent percepts of visual forms, like pixels on a video screen. We tested an alternative strategy in which shapes were traced on the surface of visual cortex by stimulating electrodes in dynamic sequence. In both sighted and blind participants, dynamic stimulation enabled accurate recognition of letter shapes predicted by the brain's spatial map of the visual world. Forms were presented and recognized rapidly by blind participants, up to 86 forms per minute. These findings demonstrate that a brain prosthetic can produce coherent percepts of visual forms.


Assuntos
Cegueira/fisiopatologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adulto , Estimulação Elétrica/métodos , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfenos , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Próteses Visuais
2.
Nat Rev Neurosci ; 24(3): 173-189, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456807

RESUMO

The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.


Assuntos
Córtex Cerebral , Giro do Cíngulo , Animais , Humanos , Giro do Cíngulo/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Memória , Imageamento por Ressonância Magnética/métodos
3.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527809

RESUMO

Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its distinct functional characteristics during different retrieval tasks. Specifically, while recognition and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct spatial patterns of response within MPC. However, other studies have emphasized alternate MPC functional dissociations in terms of brain network connectivity profiles or stimulus category selectivity. As the unique contributions of MPC to episodic memory remain unclear, adjudicating between these different accounts can provide better consensus regarding MPC function. Therefore, we used a precision-neuroimaging dataset (7T functional magnetic resonance imaging) to examine how MPC regions are differentially engaged during recognition memory and how these task-related dissociations may also reflect distinct connectivity and stimulus category functional profiles. We observed interleaved, though spatially distinct, subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli. In addition, this dissociation was further accentuated by functional subregions displaying distinct profiles of connectivity with the hippocampus during task and rest. Finally, we show that recent observations of dissociable person and place selectivity within the MPC reflect category-specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, by examining precision functional mapping within individuals, these data suggest that previously distinct observations of functional dissociation within MPC conform to a common principle of organization throughout hippocampal-neocortical memory systems.


Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal , Reconhecimento Psicológico , Humanos , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Masculino , Feminino , Reconhecimento Psicológico/fisiologia , Adulto , Adulto Jovem , Memória Episódica , Mapeamento Encefálico , Hipocampo/fisiologia , Hipocampo/diagnóstico por imagem , Rememoração Mental/fisiologia
4.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38627090

RESUMO

Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions specialized for processing specific sensory stimuli are reactivated to support content-specific retrieval. Recently, several studies have emphasized transformations in the spatial organization of these reinstated activity patterns. Specifically, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with the activity observed during perception. However, it is not clear that such transformations occur universally, with inconsistent evidence for other important stimulus categories, particularly faces. One challenge in addressing this question is the careful delineation of face-selective cortices, which are interdigitated with other selective regions, in configurations that spatially differ across individuals. Therefore, we conducted a multisession neuroimaging study to first carefully map individual participants' (nine males and seven females) face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the activity patterns within these regions during face memory encoding and retrieval. While face-selective regions were expectedly engaged during face perception at encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions, but did not show any consistent direction of spatial transformation (e.g., anteriorization). We also report on unique human intracranial recordings from VTC under the same experimental conditions. These findings highlight the importance of considering the complex configuration of category-selective cortex in elucidating principles shaping the neural transformations that occur from perception to memory.


Assuntos
Mapeamento Encefálico , Reconhecimento Facial , Imageamento por Ressonância Magnética , Lobo Temporal , Humanos , Masculino , Feminino , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Reconhecimento Facial/fisiologia , Adulto Jovem , Memória/fisiologia , Estimulação Luminosa/métodos , Rememoração Mental/fisiologia
5.
PLoS Biol ; 20(6): e3001701, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35763497

RESUMO

New findings in PLOS Biology show that visual gamma oscillations are greatly attenuated by small spatial discontinuities in visual stimuli, suggesting that their genesis occurs in response to predictable regularities in the visual world.


Assuntos
Córtex Visual , Animais , Córtex Visual Primário , Primatas , Córtex Visual/fisiologia
6.
J Neurosci ; 42(6): 1054-1067, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34965979

RESUMO

Narrowband γ oscillations (NBG: ∼20-60 Hz) in visual cortex reflect rhythmic fluctuations in population activity generated by underlying circuits tuned for stimulus location, orientation, and color. A variety of theories posit a specific role for NBG in encoding and communicating this information within visual cortex. However, recent findings suggest a more nuanced role for NBG, given its dependence on certain stimulus feature configurations, such as coherent-oriented edges and specific hues. Motivated by these factors, we sought to quantify the independent and joint tuning properties of NBG to oriented and color stimuli using intracranial recordings from the human visual cortex (male and female). NBG was shown to display a cardinal orientation bias (horizontal) and also an end- and mid-spectral color bias (red/blue and green). When jointly probed, the cardinal bias for orientation was attenuated and an end-spectral preference for red and blue predominated. This loss of mid-spectral tuning occurred even for recording sites showing large responses to uniform green stimuli. Our results demonstrate the close, yet complex, link between the population dynamics driving NBG oscillations and known feature selectivity biases for orientation and color within visual cortex. Such a bias in stimulus tuning imposes new constraints on the functional significance of the visual γ rhythm. More generally, these biases in population electrophysiology will need to be considered in experiments using orientation or color features to examine the role of visual cortex in other domains, such as working memory and decision-making.SIGNIFICANCE STATEMENT Oscillations in electrophysiological activity occur in visual cortex in response to stimuli that strongly drive the orientation or color selectivity of visual neurons. The significance of this induced "γ rhythm" to brain function remains unclear. Answering this question requires understanding how and why some stimuli can reliably generate oscillatory γ activity while others do not. We examined how different orientations and colors independently and jointly modulate γ oscillations in the human brain. Our data show that γ oscillations are greatest for certain orientations and colors that reflect known response biases in visual cortex. Such findings complicate the functional significance of γ oscillations but open new avenues for linking circuits to population dynamics in visual cortex.


Assuntos
Percepção de Cores/fisiologia , Ritmo Gama/fisiologia , Orientação Espacial/fisiologia , Córtex Visual/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
J Neurosci ; 38(17): 4230-4242, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626167

RESUMO

Evidence for intrinsic functional connectivity (FC) within the human brain is largely from neuroimaging studies of hemodynamic activity. Data are lacking from anatomically precise electrophysiological recordings in the most widely studied nodes of human brain networks. Here we used a combination of fMRI and electrocorticography (ECoG) in five human neurosurgical patients with electrodes in the canonical "default" (medial prefrontal and posteromedial cortex), "dorsal attention" (frontal eye fields and superior parietal lobule), and "frontoparietal control" (inferior parietal lobule and dorsolateral prefrontal cortex) networks. In this unique cohort, simultaneous intracranial recordings within these networks were anatomically matched across different individuals. Within each network and for each individual, we found a positive, and reproducible, spatial correlation for FC measures obtained from resting-state fMRI and separately recorded ECoG in the same brains. This relationship was reliably identified for electrophysiological FC based on slow (<1 Hz) fluctuations of high-frequency broadband (70-170 Hz) power, both during wakeful rest and sleep. A similar FC organization was often recovered when using lower-frequency (1-70 Hz) power, but anatomical specificity and consistency were greatest for the high-frequency broadband range. An interfrequency comparison of fluctuations in FC revealed that high and low-frequency ranges often temporally diverged from one another, suggesting that multiple neurophysiological sources may underlie variations in FC. Together, our work offers a generalizable electrophysiological basis for intrinsic FC and its dynamics across individuals, brain networks, and behavioral states.SIGNIFICANCE STATEMENT The study of human brain networks during wakeful "rest", largely with fMRI, is now a major focus in both cognitive and clinical neuroscience. However, little is known about the neurophysiology of these networks and their dynamics. We studied neural activity during wakeful rest and sleep within neurosurgical patients with directly implanted electrodes. We found that network activity patterns showed striking similarities between fMRI and direct recordings in the same brains. With improved resolution of direct recordings, we also found that networks were best characterized with specific activity frequencies and that different frequencies show different profiles of within-network activity over time. Our work clarifies how networks spontaneously organize themselves across individuals, brain networks, and behavioral states.


Assuntos
Ondas Encefálicas , Encéfalo/fisiologia , Conectoma , Adulto , Encéfalo/diagnóstico por imagem , Eletrocorticografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
8.
Proc Natl Acad Sci U S A ; 113(46): E7277-E7286, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27821758

RESUMO

Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain.


Assuntos
Conceitos Matemáticos , Neurônios/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Cognição/fisiologia , Eletrocorticografia , Humanos
9.
J Neurosci ; 37(30): 7188-7197, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652411

RESUMO

Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices.SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required.


Assuntos
Estimulação Elétrica , Potenciais Evocados Visuais/fisiologia , Rede Nervosa/fisiologia , Fosfenos/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
J Neurosci ; 37(40): 9667-9674, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28893929

RESUMO

To determine the spatiotemporal relationships among intrinsic networks of the human brain, we recruited seven neurosurgical patients (four males and three females) who were implanted with intracranial depth electrodes. We first identified canonical resting-state networks at the individual subject level using an iterative matching procedure on each subject's resting-state fMRI data. We then introduced single electrical pulses to fMRI pre-identified nodes of the default network (DN), frontoparietal network (FPN), and salience network (SN) while recording evoked responses in other recording sites within the same networks. We found bidirectional signal flow across the three networks, albeit with distinct patterns of evoked responses within different time windows. We used a data-driven clustering approach to show that stimulation of the FPN and SN evoked a rapid (<70 ms) response that was predominantly higher within the SN sites, whereas stimulation of the DN led to sustained responses in later time windows (85-200 ms). Stimulations in the medial temporal lobe components of the DN evoked relatively late effects (>130 ms) in other nodes of the DN, as well as FPN and SN. Our results provide temporal information about the patterns of signal flow between intrinsic networks that provide insights into the spatiotemporal dynamics that are likely to constrain the architecture of the brain networks supporting human cognition and behavior.SIGNIFICANCE STATEMENT Despite great progress in the functional neuroimaging of the human brain, we still do not know the precise set of rules that define the patterns of temporal organization between large-scale networks of the brain. In this study, we stimulated and then recorded electrical evoked potentials within and between three large-scale networks of the brain, the default network (DN), frontoparietal network (FPN), and salience network (SN), in seven subjects undergoing invasive neurosurgery. Using a data-driven clustering approach, we observed distinct temporal and directional patterns between the three networks, with FPN and SN activity predominant in early windows and DN stimulation affecting the network in later windows. These results provide important temporal information about the interactions between brain networks supporting human cognition and behavior.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Eletrodos Implantados , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
11.
Cereb Cortex ; 27(1): 567-575, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503267

RESUMO

Recent evidence suggests that specific neuronal populations in the ventral temporal cortex show larger electrophysiological responses to visual numerals compared with morphologically similar stimuli. This study investigates how these responses change from simple reading of numerals to the active use of numerals in an arithmetic context. We recorded high-frequency broadband (HFB) signals, a reliable measure for local neuronal population activity, while 10 epilepsy patients implanted with subdural electrodes performed separate numeral reading and calculation tasks. We found that calculation increased activity in the posterior inferior temporal gyrus (ITG) with a factor of approximately 1.5 over the first 500 ms of calculation, whereas no such increase was noted for reading numerals without calculation or reading and judging memory statements. In a second experiment conducted in 2 of the same subjects, we show that HFB responses increase in a systematic manner when the single numerals were presented successively in a calculation context: The HFB response in the ITG, to the second and third numerals (i.e., b and c in a + b = c), was approximately 1.5 times larger than the responses to the first numeral (a). These results provide electrophysiological evidence for modulation of local neuronal population responses to visual stimuli based on increasing task demands.


Assuntos
Conceitos Matemáticos , Reconhecimento Visual de Modelos/fisiologia , Resolução de Problemas/fisiologia , Leitura , Lobo Temporal/fisiologia , Adulto , Eletrocorticografia , Epilepsia/fisiopatologia , Feminino , Humanos , Julgamento/fisiologia , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Processamento de Sinais Assistido por Computador , Lobo Temporal/fisiopatologia , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 112(35): 11066-71, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283375

RESUMO

Theories of the neurobiology of episodic memory predominantly focus on the contributions of medial temporal lobe structures, based on extensive lesion, electrophysiological, and imaging evidence. Against this backdrop, functional neuroimaging data have unexpectedly implicated left posterior parietal cortex (PPC) in episodic retrieval, revealing distinct activation patterns in PPC subregions as humans make memory-related decisions. To date, theorizing about the functional contributions of PPC has been hampered by the absence of information about the temporal dynamics of PPC activity as retrieval unfolds. Here, we leveraged electrocorticography to examine the temporal profile of high gamma power (HGP) in dorsal PPC subregions as participants made old/new recognition memory decisions. A double dissociation in memory-related HGP was observed, with activity in left intraparietal sulcus (IPS) and left superior parietal lobule (SPL) differing in time and sign for recognized old items (Hits) and correctly rejected novel items (CRs). Specifically, HGP in left IPS increased for Hits 300-700 ms poststimulus onset, and decayed to baseline ∼200 ms preresponse. By contrast, HGP in left SPL increased for CRs early after stimulus onset (200-300 ms) and late in the memory decision (from 700 ms to response). These memory-related effects were unique to left PPC, as they were not observed in right PPC. Finally, memory-related HGP in left IPS and SPL was sufficiently reliable to enable brain-based decoding of the participant's memory state at the single-trial level, using multivariate pattern classification. Collectively, these data provide insights into left PPC temporal dynamics as humans make recognition memory decisions.


Assuntos
Memória , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos , Eletrocorticografia , Eletrodos , Humanos
13.
J Physiol ; 595(23): 7249-7260, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28901011

RESUMO

KEY POINTS: In two monogenic models of absence epilepsy, interictal beta/gamma power is augmented in homozygous stargazer (stg/stg) but not homozygous tottering (tg/tg) mice. There are distinct gene-linked patterns of aberrant phase-amplitude coupling in the interictal EEG of both stg/stg and tg/tg mice, compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both genotypes, but the abnormal phase-amplitude coupling remains. Seizure-free stg/+ mice have normal power and phase-amplitude coupling, but beta/gamma power is significantly reduced with NMDA receptor blockade, revealing a latent cortical network phenotype that is separable from, and therefore not a result of, seizures. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers free from epileptiform activity, and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment. ABSTRACT: In childhood absence epilepsy, cortical seizures are brief and intermittent; however there are extended periods without behavioural or electrographic ictal events. This genetic disorder is associated with variable degrees of cognitive dysfunction, but no consistent functional biomarkers that might provide insight into interictal cortical function have been described. Previous work in monogenic mouse models of absence epilepsy have shown that the interictal EEG displays augmented beta/gamma power in homozygous stargazer (stg/stg) mice bearing a presynaptic AMPA receptor defect, but not homozygous tottering (tg/tg) mice with a P/Q type calcium channel mutation. To further evaluate the interictal EEG, we quantified phase-amplitude coupling (PAC) in stg/stg, stg/+, tg/tg and wild-type (+/+) mice. We found distinct gene-linked patterns of aberrant PAC in stg/stg and tg/tg mice compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both stg/stg and tg/tg, but the abnormal PAC remains. Stg/+ mice are seizure free with normal baseline beta/gamma power and normal theta-gamma PAC, but like stg/stg mice, beta/gamma power is significantly reduced by NMDA receptor blockade, a treatment that paradoxically enhances seizures in stg/stg mice. Stg/+ mice, therefore, have a latent cortical network phenotype that is veiled by NMDA-mediated neurotransmission. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers in the absence of epileptiform activity and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment.


Assuntos
Anticonvulsivantes/farmacologia , Ondas Encefálicas , Epilepsia Tipo Ausência/fisiopatologia , Etossuximida/farmacologia , Genótipo , Animais , Anticonvulsivantes/uso terapêutico , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Etossuximida/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Epilepsy Behav ; 64(Pt A): 248-252, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27780085

RESUMO

Excerpted proceedings of the Eighth International Workshop on Advances in Electrocorticography (ECoG), which convened October 15-16, 2015 in Chicago, IL, are presented. The workshop series has become the foremost gathering to present current basic and clinical research in subdural brain signal recording and analysis.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo , Eletrocorticografia , Pesquisa Biomédica , Humanos
15.
J Neurosci ; 34(38): 12828-36, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232118

RESUMO

Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception.


Assuntos
Face , Lateralidade Funcional/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Estimulação Elétrica , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa
16.
Proc Natl Acad Sci U S A ; 109(38): 15514-9, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949666

RESUMO

Our understanding of the human default mode network derives primarily from neuroimaging data but its electrophysiological correlates remain largely unexplored. To address this limitation, we recorded intracranially from the human posteromedial cortex (PMC), a core structure of the default mode network, during various conditions of internally directed (e.g., autobiographical memory) as opposed to externally directed focus (e.g., arithmetic calculation). We observed late-onset (>400 ms) increases in broad high γ-power (70-180 Hz) within PMC subregions during memory retrieval. High γ-power was significantly reduced or absent when subjects retrieved self-referential semantic memories or responded to self-judgment statements, respectively. Conversely, a significant deactivation of high γ-power was observed during arithmetic calculation, the duration of which correlated with reaction time at the signal-trial level. Strikingly, at each recording site, the magnitude of activation during episodic autobiographical memory retrieval predicted the degree of suppression during arithmetic calculation. These findings provide important anatomical and temporal details-at the neural population level-of PMC engagement during autobiographical memory retrieval and address how the same populations are actively suppressed during tasks, such as numerical processing, which require externally directed attention.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Neurônios/patologia , Adulto , Mapeamento Encefálico/métodos , Cognição , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Matemática , Pessoa de Meia-Idade , Modelos Anatômicos , Reprodutibilidade dos Testes
17.
J Neurosci ; 33(25): 10439-46, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23785155

RESUMO

The involvement of retrosplenial cortex (RSC) in human autobiographical memory retrieval has been confirmed by functional brain imaging studies, and is supported by anatomical evidence of strong connectivity between the RSC and memory structures within the medial temporal lobe (MTL). However, electrophysiological investigations of the RSC and its interaction with the MTL have mostly remained limited to the rodent brain. Recently, we reported a selective increase of high-frequency broadband (HFB; 70-180 Hz) power within the human RSC during autobiographical retrieval, and a predominance of 3-5 Hz theta band oscillations within the RSC during the resting state. In the current study, we aimed to explore the temporal dynamics of theta band interaction between human RSC and MTL during autobiographical retrieval. Toward this aim, we obtained simultaneous recordings from the RSC and MTL in human subjects undergoing invasive electrophysiological monitoring, and quantified the strength of RSC-MTL theta band phase locking. We observed significant phase locking in the 3-4 Hz theta range between the RSC and the MTL during autobiographical retrieval. This theta band phase coupling was transient and peaked at a consistent latency before the peak of RSC HFB power across subjects. Control analyses confirmed that theta phase coupling between the RSC and MTL was not seen for other conditions studied, other sites of recording, or other frequency ranges of interest (1-20 Hz). Our findings provide the first evidence of theta band interaction between the human RSC and MTL during conditions of autobiographical retrieval.


Assuntos
Córtex Cerebral/fisiologia , Memória Episódica , Rememoração Mental/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta/fisiologia , Adulto , Mapeamento Encefálico , Interpretação Estatística de Dados , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia
18.
J Neurosci ; 33(16): 6709-15, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595729

RESUMO

Is there a distinct area within the human visual system that has a preferential response to numerals, as there is for faces, words, or scenes? We addressed this question using intracranial electrophysiological recordings and observed a significantly higher response in the high-frequency broadband range (high γ, 65-150 Hz) to visually presented numerals, compared with morphologically similar (i.e., letters and false fonts) or semantically and phonologically similar stimuli (i.e., number words and non-number words). Anatomically, this preferential response was consistently localized in the inferior temporal gyrus and anterior to the temporo-occipital incisure. This region lies within or close to the fMRI signal-dropout zone produced by the nearby auditory canal and venous sinus artifacts, an observation that may account for negative findings in previous fMRI studies of preferential response to numerals. Because visual numerals are culturally dependent symbols that are only learned through education, our novel finding of anatomically localized preferential response to such symbols provides a new example of acquired category-specific responses in the human visual system.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Matemática , Reconhecimento Visual de Modelos/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Eletrodos , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação/fisiologia , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Vocabulário , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 108(7): 3023-8, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282630

RESUMO

The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network (DMN) remains largely unknown. Here we use intracranial recordings in the human posteromedial cortex (PMC), a core node within the DMN, during conditions of cued rest, autobiographical judgments, and arithmetic processing. We found a heterogeneous profile of PMC responses in functional, spatial, and temporal domains. Although the majority of PMC sites showed increased broad gamma band activity (30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial cortex, responded selectively to autobiographical stimuli. However, no site responded to both conditions, even though they were located within the boundaries of the DMN identified with resting-state functional imaging and similarly deactivated during arithmetic processing. These findings, which provide electrophysiological evidence for heterogeneity within the core of the DMN, will have important implications for neuroimaging studies of the DMN.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Modelos Neurológicos , Desempenho Psicomotor/fisiologia , Adulto , Eletrofisiologia , Feminino , Humanos , Masculino , Matemática , Rememoração Mental , Descanso/fisiologia , Autoimagem
20.
J Neurosci ; 32(43): 14915-20, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100414

RESUMO

Face-selective neural responses in the human fusiform gyrus have been widely examined. However, their causal role in human face perception is largely unknown. Here, we used a multimodal approach of electrocorticography (ECoG), high-resolution functional magnetic resonance imaging (fMRI), and electrical brain stimulation (EBS) to directly investigate the causal role of face-selective neural responses of the fusiform gyrus (FG) in face perception in a patient implanted with subdural electrodes in the right inferior temporal lobe. High-resolution fMRI identified two distinct FG face-selective regions [mFus-faces and pFus-faces (mid and posterior fusiform, respectively)]. ECoG revealed a striking anatomical and functional correspondence with fMRI data where a pair of face-selective electrodes, positioned 1 cm apart, overlapped mFus-faces and pFus-faces, respectively. Moreover, electrical charge delivered to this pair of electrodes induced a profound face-specific perceptual distortion during viewing of real faces. Specifically, the subject reported a "metamorphosed" appearance of faces of people in the room. Several controls illustrate the specificity of the effect to the perception of faces. EBS of mFus-faces and pFus-faces neither produced a significant deficit in naming pictures of famous faces on the computer, nor did it affect the appearance of nonface objects. Further, the appearance of faces remained unaffected during both sham stimulation and stimulation of a pair of nearby electrodes that were not face-selective. Overall, our findings reveal a striking convergence of fMRI, ECoG, and EBS, which together offer a rare causal link between functional subsets of the human FG network and face perception.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Transtornos da Percepção/etiologia , Estimulação Luminosa/efeitos adversos , Córtex Cerebral/irrigação sanguínea , Estimulação Elétrica/efeitos adversos , Eletroencefalografia , Face , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Tomografia Computadorizada por Raios X , Vias Visuais/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA