Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; 20(24): e2309459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519858

RESUMO

Redox flow batteries (RFBs) are increasingly being considered for a wide range of energy storage applications, and such devices rely on proton exchange membranes (PEMs) to function. PEMs are high-cost, petroleum-derived polymers that often possess limited durability, variable electrochemical performance, and are linked to discharge of perfluorinated compounds. Alternative PEMs that utilize biobased materials, including lignin and sulfonated lignin (SL), low-cost byproducts of the wood pulping process, have struggled to balance electrochemical performance with dimensional stability. Herein, SL nanoparticles are demonstrated for use as a nature-derived, ion-conducting PEM material. SL nanoparticles (NanoSLs) can be synthesized for increased surface area, uniformity, and miscibility compared with macrosized lignin, improving proton conductivity. After addition of polyvinyl alcohol (PVOH) as a structural backbone, membranes with the highest NanoSL concentration demonstrated an ion exchange capacity of 1.26 meq g-1, above that of the commercial PEM Nafion 112 (0.98 meq g-1), along with a conductivity of 80.4 mS cm-1 in situ, above that of many biocomposite PEMs, and a coulombic efficiency (CE), energy efficiency (EE) and voltage efficiency (VE) of 91%, 68% and 78%, respectively at 20 mA cm-2. These nanocomposite PEMs demonstrate the potential for valorization of forest biomass waste streams for high value clean energy applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38916653

RESUMO

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.

3.
Soft Matter ; 19(36): 7020-7032, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676239

RESUMO

Novel superhydrophobic coatings, that are both biodegradable and biosourced, have the potential to revolutionize the water-repellent coating industry. Here, water-repellent coatings were prepared from commercially unavailable plant waxes, isolated using solvent extraction and characterized using DSC, GC-MS and DLS. In the first stage, a plant survey was conducted to identify an ideal plant source for the final spray, in which Whatman filter paper was submerged in a wax-solvent solution with recrystallization occurring upon air-drying. In the second stage, aqueous, PFC-free wax dispersions were prepared, coated onto textiles (cotton and polyester), and heat-treated with a home drying machine to allow for the spreading and recrystallization of the waxes. In both stages, SEM visualization verified the coating's morphology, and contact angle measurements showed them to be superhydrophobic. It was concluded that, using less coating material than commercial coatings, high-performing petroleum-free coatings could be made and applied onto textiles of various polarities.

4.
Angew Chem Int Ed Engl ; 62(44): e202308822, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37466460

RESUMO

Combustion is often difficult to spatially direct or tune associated kinetics-hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A 'surface-then-core' order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2 ) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and µm-diameter tubes from appropriately sized fibers.

5.
Biomacromolecules ; 21(3): 1103-1111, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003977

RESUMO

This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood. In this study, we developed a biocompatible material that inhibits blood clotting through surface functionalization to mimic heparin. Surface chemistry of CNCs was modified from "plain" CNCs (70 mmol SO3-/kg) to 500 mmol COO-/kg (TEMPO-oxidized CNCs) and 330 mmol SO3-/kg CNCs (sulfonated CNCs). Platelet adherence and blood assays show that changes in functionalization reduce coagulation. By utilizing and modifying CNCs reactive functional groups, we create a material with unique and favorable mechanical properties while also reducing clotting.


Assuntos
Celulose , Nanopartículas , Materiais Biocompatíveis , Heparina , Polissacarídeos
6.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316421

RESUMO

The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64-68% and crystallite sizes of 1.4-3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26-47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.


Assuntos
Celulose Oxidada/química , Nanoestruturas/química , Piperidinas/química , Ácidos Sulfúricos/química , Densitometria , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Difração de Raios X
7.
Chem Soc Rev ; 47(8): 2609-2679, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29658545

RESUMO

A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

8.
Small ; 14(46): e1802068, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30216656

RESUMO

The transformative and versatile role of cellulose nanomaterials (CNMs) as an enabling technology in the preparation of multiscale mesostructured ceramics, with pore sizes in the meso- (2-50 nm) and macroporosity (above 50 nm) range with controlled porous architecture across the structure is explored. CNMs have revolutionized functional advanced materials concepts and technology by using natural resources to derive superb properties. Its unique chemical and physical properties have inspired its exploitation as a reinforcement agent, stimuli responsive tool, and templating agent mostly for biologic and polymeric materials, as well as for metals and ceramics. CNMs can act as a sacrificial filler templating agent, a surface modifier agent, and as an aid for shaping macrostructures into bulk samples. A deep knowledge of the synergistic interaction mechanisms between CNMs and ceramic particles to assemble them in solution and into solid structures is key to advance this technology, and to develop a predictive understanding of synthesis and processing mechanisms that relates morphology evolution, processing, and final physical properties. The potential ease of processing and versatility of CNMs for functional ceramic technology, intimately linked to the CNMs' nature and properties, will make a significant impact with respect to the current state of the art.

9.
Biomacromolecules ; 18(2): 517-525, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28068070

RESUMO

Cellulose nanocrystals (CNCs) are mechanically rigid, toxicologically benign, fiber-like nanoparticles. They can easily be extracted from renewable biosources and have attracted significant interest as reinforcing fillers in polymers. We here report the modification of CNCs with the 2-ureido-4[1H]pyrimidinone (UPy) motif as an adaptive compatibilizer, which permits the dispersion of UPy-modified CNCs in nonpolar as well as polar media. In toluene, the UPy motifs appear to form intra-CNC dimers, so that the particles are somewhat hydrophobized and well-dispersible in this nonpolar solvent. By contrast, the UPy motifs dissociate in DMF and promote dispersibility through interactions with this polar solvent. We have exploited this adaptiveness and integrated UPy-modified CNCs into nonpolar and polar host polymers, which include different poly(ethylene)s, a polystyrene-block-polybutadiene-block-polystyrene elastomer and poly(ethylene oxide-co-epichlorohydrin). All nanocomposites display an increase of stiffness and strength in comparison to the neat polymer, and some compositions retain a high elongation at break, even at a filler content of 15% w/w.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Elastômeros/química , Nanocompostos/química , Nanopartículas/química , Polímeros/química
10.
Biomacromolecules ; 18(7): 2034-2044, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28485582

RESUMO

Thin cellulose nanofiber (CNF) nanostructured substrates with varying roughness, stiffness (Young's modulus), porosity, and swelling properties were produced by varying the conditions used during fabrication. It was shown that with increased heat exposure, CNF substrate porosity in an aqueous state decreased while Young's modulus in a water submerged state increased. In this study, the adhesion and viability of mesenchymal stem cells (MSCs) cultured on this CNF substrate will be presented. Viability of D1/BALBc MSCs were assessed for 24 and 48 h, and it was shown that depending on the CNF substrate the viability varied significantly. The adhesion of MSCs after 6 and 24 h was conditional on material mechanical properties and porosity of the CNF in cell culture conditions. These results suggest that material properties of CNF nanostructured substrate within the aqueous state can be easily tuned with curing step without any chemical modification to the CNF and that these changes can affect MSC viability in cell culture.


Assuntos
Celulose/química , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Animais , Adesão Celular , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Células Cultivadas , Módulo de Elasticidade , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Porosidade
11.
Biomacromolecules ; 16(4): 1267-75, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25789784

RESUMO

When considering the inhalation of high-aspect ratio nanoparticles (HARN), the characterization of their specific interaction with lung cells is of fundamental importance to help categorize their potential hazard. The aim of the present study was to assess the interaction of cellulose nanocrystals (CNCs) with a multicellular in vitro model of the epithelial airway barrier following realistic aerosol exposure. Rhodamine-labeled CNCs isolated from cotton (c-CNCs, 237 ± 118 × 29 ± 13 nm) and tunicate (t-CNCs, 2244 ± 1687 × 30 ± 8 nm) were found to display different uptake behaviors due to their length, although also dependent upon the applied concentration, when visualized by laser scanning microscopy. Interestingly, the longer t-CNCs were found to exhibit a lower clearance by the lung cell model compared to the shorter c-CNCs. This difference can be attributed to stronger fiber-fiber interactions between the t-CNCs. In conclusion, nanofiber length and concentration has a significant influence on their interaction with lung cells in vitro.


Assuntos
Aerossóis/efeitos adversos , Celulose/efeitos adversos , Nanopartículas/efeitos adversos , Mucosa Respiratória/efeitos dos fármacos , Aerossóis/química , Linhagem Celular , Celulose/química , Humanos , Pulmão/citologia , Nanofibras/efeitos adversos , Nanofibras/química , Nanopartículas/química
12.
Opt Lett ; 39(10): 2872-5, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978225

RESUMO

The capability to deliver light to specific locations within the brain using optogenetic tools has opened up new possibilities in the field of neural interfacing. In this context, optical fibers are commonly inserted into the brain to activate or mute neurons using photosensitive proteins. While chronic optogenetic stimulation studies are just beginning to emerge, knowledge gathered in connection with electrophysiological implants suggests that the mechanical mismatch of conventional optical fibers and the cortical tissue may be a significant contributor to neuroinflammatory response. Here, we present the design and fabrication of physiologically responsive, mechanically adaptive optical fibers made of poly(vinyl alcohol) (PVA) that may mitigate this problem. Produced by a one-step wet-spinning process, the fibers display a tensile storage modulus E' of ∼7000 MPa in the dry state at 25°C and can thus readily be inserted into cortical tissue. Exposure to water causes a drastic reduction of E' to ∼35 MPa on account of modest swelling with the water. The optical properties at 470 and 590 were comparable with losses of 0.7±0.04 dB/cm at 470 nm and 0.6±0.1 dB/cm at 590 nm in the dry state and 1.1±0.1 dB/cm at 470 nm and 0.9±0.3 dB/cm at 590 nm in the wet state. The dry end of a partially switched fiber with a length of 10 cm was coupled with a light-emitting diode with an output of 10.1 mW to deliver light with a power density of >500 mW/cm2 from the wet end, which is more than sufficient to stimulate neurons in vivo. Thus, even without a low-refractive index cladding, the physiologically responsive, mechanically adaptive optical fibers presented here appear to be a very useful new tool for future optogenetic studies.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Iluminação/instrumentação , Sistemas Microeletromecânicos/instrumentação , Optogenética/instrumentação , Optogenética/métodos , Estimulação Luminosa/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Semicondutores
13.
Part Fibre Toxicol ; 11: 40, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25245637

RESUMO

BACKGROUND: The challenge remains to reliably mimic human exposure to high aspect ratio nanoparticles (HARN) via inhalation. Sophisticated, multi-cellular in vitro models are a particular advantageous solution to this issue, especially when considering the need to provide realistic and efficient alternatives to invasive animal experimentation for HARN hazard assessment. By incorporating a systematic test-bed of material characterisation techniques, a specific air-liquid cell exposure system with real-time monitoring of the cell-delivered HARN dose in addition to key biochemical endpoints, here we demonstrate a successful approach towards investigation of the hazard of HARN aerosols in vitro. METHODS: Cellulose nanocrystals (CNCs) derived from cotton and tunicates, with differing aspect ratios (~9 and ~80), were employed as model HARN samples. Specifically, well-dispersed and characterised CNC suspensions were aerosolised using an "Air Liquid Interface Cell Exposure System" (ALICE) at realistic, cell-delivered concentrations ranging from 0.14 to 1.57 µg/cm2. The biological impact (cytotoxicity, oxidative stress levels and pro-inflammatory effects) of each HARN sample was then assessed using a 3D multi-cellular in vitro model of the human epithelial airway barrier at the air liquid interface (ALI) 24 hours post-exposure. Additionally, the testing strategy was validated using both crystalline quartz (DQ12) as a positive particulate control in the ALICE system and long fibre amosite asbestos (LFA) to confirm the susceptibility of the in vitro model to a fibrous insult. RESULTS: A rapid (≤ 4 min), controlled nebulisation of CNC suspensions enabled a dose-controlled and spatially homogeneous CNC deposition onto cells cultured under ALI conditions. Real-time monitoring of the cell-delivered CNC dose with a quartz crystal microbalance was accomplished. Independent of CNC aspect ratio, no significant cytotoxicity (p>0.05), induction of oxidative stress, or (pro)-inflammatory responses were observed up to the highest concentration of 1.57 µg/cm2. Both DQ12 and LFA elicited a significant (p<0.05) pro-inflammatory response at sub-lethal concentrations in vitro. CONCLUSION: In summary, whilst the present study highlights the benign nature of CNCs, it is the advanced technological and mechanistic approach presented that allows for a state of the art testing strategy to realistically and efficiently determine the in vitro hazard concerning inhalation exposure of HARN.


Assuntos
Celulose/toxicidade , Exposição por Inalação/efeitos adversos , Nanopartículas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Testes de Toxicidade/métodos , Aerossóis , Amianto Amosita/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Nanofibras , Nebulizadores e Vaporizadores , Estresse Oxidativo/efeitos dos fármacos , Quartzo/toxicidade , Técnicas de Microbalança de Cristal de Quartzo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Medição de Risco , Fatores de Tempo
14.
ACS Sustain Chem Eng ; 12(1): 490-500, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38213545

RESUMO

The engineering thermoplastics industry has largely limited the use of natural fiber reinforcements due to their susceptibility to low-onset thermal degradation and water absorption. Therefore, in order to utilize these economically viable and environmentally friendly materials effectively through common composite fabrication methods such as hot pressing, safeguarding them from thermal degradation becomes essential. This work presents a viable industrially technique called sequential ball milling for processing unbleached softwood kraft pulp fibers (PF) with an engineering thermoplastics polyamide 6 (PA6) with high melting temperatures (>220 °C). An additional eco-friendly modification step that employs ball milling and cellulose nanocrystal (CNC) has been implemented in this study to enhance the mechanical properties of the composites. Special attention is given to fine-tuning key variables, such as milling duration and PF particle size, to produce optimal composites. Leveraging the ability of sequential ball milling to evenly distribute pulp fibers into PA6, a 160% increase in Young's modulus was achieved with the incorporation of 30 wt % PF. Importantly, the introduction of a 5 wt % CNC modifying agent elevated Young's modulus to 4.3 GPa, marking a 187% improvement over unmodified PA6. Diverse techniques, including rheological analyses, thermomechanical evaluations, morphological examinations, and assessments of moisture absorption, were utilized to validate the efficiency of the suggested processing approach and the modification phase.

15.
PLoS One ; 19(3): e0299810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38513160

RESUMO

Stomatal movement, initiated by specialized epidermal cells known as guard cells (GCs), plays a pivotal role in plant gas exchange and water use efficiency. Despite protocols existing for isolating GCs through proplasting for carrying out biochemical, physiological, and molecular studies, protocals for isolating GCs with their cell walls still intact have been lacking in the literature. In this paper, we introduce a method for the isolation of complete GCs from Vicia faba and show their membrane to remain impermeable through propidium iodide staining. This methodology enables further in-depth analyses into the cell wall composition of GCs, facilitating our understanding of structure-function relationship governing reversible actuation within cells.


Assuntos
Fabaceae , Vicia faba , Vicia faba/metabolismo , Parede Celular , Microtúbulos/metabolismo
16.
Int J Biol Macromol ; 266(Pt 1): 131212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552693

RESUMO

In this study, we successfully developed a screen-printed pH-responsive intelligent label using low molecular weight chitosan grafted with phenol red (LCPR) as a colorant for screen printing ink. The LCPR was synthesized via a Mannich reaction, and its successful grafting was confirmed through FT-IR, UV-vis, and NMR spectroscopy. The LCPR exhibited lower crystallinity and thermal stability compared to low molecular weight chitosan (LC) and demonstrated zwitterionic behavior. To create intelligent labels, the LCPR-based ink was efficiently printed on cotton substrates with high resolution. The label exhibited remarkable sensitivity to buffer pH solutions and ammonia gas, leading to distinctive color changes from orange to red to purple. Additionally, the label showed excellent reversibility, storage stability, and leaching resistance to different food simulant solutions. The label was utilized to monitor shrimp freshness, successfully detecting a noticeable color shift upon spoilage. These findings highlight the significant potential of the LCPR-based label as an intelligent food packaging solution, offering pH-responsiveness and color stability for qualitative freshness detection of protein-rich food.


Assuntos
Quitosana , Embalagem de Alimentos , Peso Molecular , Fenolsulfonaftaleína , Quitosana/química , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio , Fenolsulfonaftaleína/química , Animais
17.
ACS Appl Eng Mater ; 2(5): 1288-1297, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38808266

RESUMO

A superhydrophobic textile coating, applied by using a home drying machine, was developed as an aqueous dispersion of waxes that were extracted from recycled Christmas trees. Because the bulk extraction of waxes yielded a mixture of hydrophobic and hydrophilic compounds, a purification process was tested to determine if removing noncrystallizing wax components would enhance the performance of the coating. The performances of coatings created from the crude and enriched extracts were compared, and no significant difference in hydrophobicity was found. Moreover, although the enriched coating was slightly more breathable, there was not enough of an improvement to justify the additional purification steps, rendering the crude extract more industrially viable. Overall, Christmas tree waxes are readily sourced and are capable of producing superhydrophobic coatings without the need for a costly purification step.

18.
Nanoscale Adv ; 6(15): 3923-3933, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39050949

RESUMO

Subcritical water extraction (SWE) is an emerging green and efficient hydrothermal technology, that offers superior performance in active material extraction, scalability, and reduction of harsh process chemicals, in biomass conversion. Regarding biomaterials, traditional isolation methods for cellulose nanocrystals (CNCs) are reliant on harsh chemicals (i.e., strong acid), which are expensive with little to no recyclability. This paper explores SWE as a nanotechnology platform to produce CNCs under the principle of "less is more" - by using low content (1 wt%) of phosphoric acid under subcritical conditions. Acid-catalyzed digestion of woody biomass afforded CNCs desirable physico-chemical features that are dependent on the process parameters (temperature, pressure, and time). Process temperature had a major impact on the reduction of fiber sizes (macroscale to nanoscale), fiber degradation, and fiber coloration (white to black). Electron microscopy revealed rod-like structures, with varying particle size distribution (100-500 nm), dominated by process time. However, colloidal stability was low (versus acid-hydrolyzed CNCs) due to the low charges on the surface of CNCs. Interestingly, vibrational spectroscopy reveals the effect of process pressure on biomass conversion to CNCs (with cellulose I structure) evidenced by Raman spectroscopy and solid-state fluorometry. The produced (bio)nanomaterials possessed a degree of crystallinity (∼70%) comparable to those produced via acid hydrolysis, with higher thermal stability, enhancing their applicability over a wide range of heat-intensive processes required for nanocomposite applications in biomedical and automotive industries, among others.

19.
Carbohydr Polym ; 340: 122299, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858022

RESUMO

As integral parts of fuel cells, polymer electrolyte membranes (PEM) facilitate the conversion of hydrogen's chemical energy into electricity and water. Unfortunately, commercial PEMs are associated with high costs, limited durability, variable electrochemical performance and are based on perfluorinated polymers that persist in the environment. Nanocellulose-based PEMs have emerged as alternative options given their renewability, thermal and mechanical stability, low-cost, and hydrophilicity. These PEMs take advantage of the anionic nature of most nanocelluloses, as well as their facile modification with conductive functional groups, for instance, to endow ionic and electron conductivity. Herein, we incorporated for the first time two nanocellulose types, TEMPO-oxidized and sulfonated, to produce a fully bio-based PEM and studied their contribution separately and when mixed in a PEM matrix. Sulfonated nanocellulose-based PEMs are shown to perform similarly to commercial and bio-based membranes, demonstrating good thermal-oxidative stability (up to 190 °C), mechanical robustness (Young's modulus as high as 1.15 GPa and storage moduli >13 GPa), and high moisture-uptake capacity (ca. 6330 % after 48 h). The introduced nanocellulose membranes are shown as promising materials for proton-exchange material applications, as required in fuel cells.

20.
Biomacromolecules ; 14(4): 1223-30, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23458473

RESUMO

On account of their intriguing mechanical properties, low cost, and renewable nature, high-aspect-ratio cellulose nanocrystals (CNCs) are an attractive component for many nanomaterials. Due to hydrogen bonding between their surface hydroxyl groups, unmodified CNCs (H-CNCs) aggregate easily and are often difficult to disperse. It is shown here that on account of ionic repulsion between charged surface groups, slightly phosphorylated CNCs (P-CNCs, average dimensions 31 ± 14 × 316 ± 127 nm, surface charge density = 10.8 ± 2.7 mmol/kg cellulose), prepared by controlled hydrolysis of cotton with phosphoric acid, are readily dispersible and form stable dispersions in polar solvents such as water, dimethyl sulfoxide, and dimethylformamide. Thermogravimetric analyses reveal that these P-CNCs exhibit a much higher thermal stability than partially sulfated CNCs (S-CNCs), which are frequently employed, but suffer from limited thermal stability. Nanocomposites of an ethylene oxide-epichlorohydrin copolymer and H-CNCs, S-CNCs, and P-CNCs were prepared, and their mechanical properties were studied by dynamic mechanical thermal analysis. The results show that P-CNCs offer a reinforcing capability that is comparable to that of H-CNCs or S-CNCs.


Assuntos
Materiais Biocompatíveis/síntese química , Celulose/química , Líquidos Iônicos/química , Nanocompostos/química , Nanopartículas/química , Ácidos Fosfóricos/química , Ácidos Fosfóricos/metabolismo , Materiais Biocompatíveis/química , Epicloroidrina/química , Óxido de Etileno/química , Hidrólise , Polímeros/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA