Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 15(1): 55-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064183

RESUMO

BACKGROUND: Muscle aging is associated with a consistent decrease in the ability of muscle tissue to regenerate following intrinsic muscle degradation, injury or overuse. Age-related imbalance of protein synthesis and degradation, mainly regulated by AKT/mTOR pathway, leads to progressive loss of muscle mass. Maintenance of anabolic and regenerative capacities of skeletal muscles may be regarded as a therapeutic option for sarcopenia and other muscle wasting diseases. Our previous studies have demonstrated that BIO101, a pharmaceutical grade 20-hydroxyecdysone, increases protein synthesis through the activation of MAS receptor involved in the protective arm of renin-angiotensin-aldosterone system. The purpose of the present study was to assess the anabolic and pro-differentiating properties of BIO101 on C2C12 muscle cells in vitro and to investigate its effects on adult and old mice models in vivo. METHODS: The effects of BIO101 on C2C12 differentiation were assessed using myogenic transcription factors and protein expression of major kinases of AKT/mTOR pathway by Western blot. The in vivo effects of BIO101 have been investigated in BIO101 orally-treated (50 mg/kg/day) adult mice (3 months) for 28 days. To demonstrate potential beneficial effect of BIO101 treatment in a sarcopenic mouse model, we use orally treated 22-month-old C57Bl6/J mice, for 14 weeks with vehicle or BIO101. Mice body and muscle weight were recorded. Physical performances were assessed using running capacity and muscle contractility tests. RESULTS: Anabolic properties of BIO101 were confirmed by the rapid activation of AKT/mTOR, leading to an increase of C2C12 myotubes diameters (+26%, P < 0.001). Pro-differentiating effects of BIO101 on C2C12 myoblasts were revealed by increased expression of muscle-specific differentiation transcription factors (MyoD, myogenin), resulting in increased fusion index and number of nuclei per myotube (+39% and +53%, respectively, at day 6). These effects of BIO101 were like those of angiotensin (1-7) and were abolished with the use of A779, a MAS receptor specific antagonist. Chronic BIO101 oral treatment induced AKT/mTOR activation and anabolic effects accompanied with improved physical performances in adult and old animals (maximal running distance and maximal running velocity). CONCLUSIONS: Our data suggest beneficial anabolic and pro-differentiating effects of BIO101 rendering BIO101 a potent drug candidate for treating sarcopenia and possibly other muscle wasting disorders.


Assuntos
Doenças Musculares , Sarcopenia , Camundongos , Animais , Sarcopenia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Atrofia Muscular/patologia , Serina-Treonina Quinases TOR/metabolismo , Mioblastos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
2.
J Steroid Biochem Mol Biol ; 212: 105897, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33862260

RESUMO

Ecdysteroids are not endogenous to mammals, but are normal components of the food intake of many mammalian species consuming phytoecdysteroid-containing plants. The most frequently encountered phytoecdysteroid is 20-hydroxyecdysone (20E). Several pharmaceutical effects have been observed after ecdysteroid injection or ingestion, but it is not clear to what extent metabolites generated in the mammalian body contribute to these effects. The C21-ecdysteroid poststerone (Post) is a metabolite of 20E in rodents. Post analogues are key intermediates in the metabolism of exogenous ecdysteroids possessing a C20/22-diol. The pharmacokinetics, bioavailability and metabolism of Post have been assessed in male rats after ingestion and injection. The bioavailability of Post is significantly greater than that of 20E and the presence of an efficient entero-hepatic cycle allows Post to be effectively metabolised to a wide range of metabolites which are excreted mainly in the faeces, but also to some extent in the urine. Several of the major metabolites in the bile have been identified unambiguously as 3-epi-poststerone, 16α-hydroxypoststerone, 21-hydroxypoststerone and 3-epi-21-hydroxypoststerone. Conjugates are also present. Parallels are drawn to the metabolism of endogenous vertebrate steroid hormones, to which Post bears more similarity than 20E.


Assuntos
Ecdisterona/farmacocinética , Animais , Bile/metabolismo , Disponibilidade Biológica , Ecdisterona/sangue , Fezes/química , Masculino , Ratos Wistar
3.
Physiol Behav ; 128: 226-31, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24534167

RESUMO

In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue.


Assuntos
Gorduras na Dieta/farmacologia , Ecdisterona/farmacologia , Homeostase/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Animais , Chenopodium quinoa , Gorduras na Dieta/metabolismo , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Fezes/química , Glucose/metabolismo , Homeostase/fisiologia , Absorção Intestinal/fisiologia , Lipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Extratos Vegetais/farmacologia
4.
Obesity (Silver Spring) ; 20(2): 270-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21869758

RESUMO

Besides their well-known effect in the molting control in insects, ecdysteroids are steroid hormones that display potential pharmacologic and metabolic properties in mammals. The most common ecdysteroid, 20-hydroxyecdysone (20E) is found in many plants such as quinoa. The aim of the present study was to investigate the ability of quinoa extract (Q) enriched in 20E supplementation to prevent the onset of diet-induced obesity and to regulate the expression of adipocyte-specific genes in mice. Mice were fed a standard low-fat (LF) or a high-fat (HF) diet with or without supplementation by 20E-enriched Q or pure 20E for 3 weeks. Supplementation with Q reduced adipose tissue development in HF mice without modification of their body weight gain. This adipose tissue-specific effect was mainly associated with a reduced adipocyte size and a decrease in the expression of several genes involved in lipid storage, including lipoprotein lipase and phosphoenolpyruvate carboxykinase. Furthermore, Q-treated mice exhibited marked attenuation of mRNA levels of several inflammation markers (monocyte chemotactic protein-1, CD68) and insulin resistance (osteopontin, plasminogen activator inhibitor-1 (PAI-1)) as compared to HF mice. Q supplementation also reversed the effects of HF-induced downregulation of the uncoupling protein(s) (UCP(s)) mRNA levels in muscle. Similar results were obtained in mice fed a HF diet supplemented with similar amounts of pure 20E, suggesting that the latter accounted for most of the Q effects. Our study indicates that Q has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention and treatment of obesity and obesity-associated disorders.


Assuntos
Adipocinas/metabolismo , Fármacos Antiobesidade/farmacologia , Chenopodium quinoa , Ecdisterona/farmacologia , Obesidade/dietoterapia , Extratos Vegetais/farmacologia , Tecido Adiposo/metabolismo , Animais , Chenopodium quinoa/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Obesos , Obesidade/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA