Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol NMR ; 78(2): 73-86, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546905

RESUMO

Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cß resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.


Assuntos
Fragmentos Fab das Imunoglobulinas , Marcação por Isótopo , Ressonância Magnética Nuclear Biomolecular , Fragmentos Fab das Imunoglobulinas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Marcação por Isótopo/métodos , Humanos , Sistema Livre de Células , Isótopos de Nitrogênio , Anticorpos Monoclonais/química
2.
Mol Pharm ; 18(7): 2521-2539, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34151567

RESUMO

Liposomal formulations represent attractive biocompatible and tunable drug delivery systems for peptide drugs. Among the tools to analyze their physicochemical properties, nuclear magnetic resonance (NMR) spectroscopy, despite being an obligatory technique to characterize molecular structure and dynamics in chemistry as well as in structural biology, yet appears to be rather sparsely used to study drug-liposome formulations. In this work, we exploited several facets of liquid-state NMR spectroscopy to characterize liposomal delivery systems for the apelin-derived K14P peptide and K14P modified by Nα-fatty acylation. Various liposome compositions and preparation modes were analyzed. Using NMR, in combination with cryo-electron microscopy and dynamic light scattering, we determined structural, dynamic, and self-association properties of these peptides in solution and probed their interactions with liposomes. Using 31P and 1H NMR, we characterized membrane fluidity and thermotropic phase transitions in empty and loaded liposomes. Based on diffusion and 1H NMR experiments, we localized and quantified peptides with respect to the interior/exterior of liposomes and changes over time and upon thermal treatments. Finally, we assessed the release kinetics of several solutes and compared various formulations. Taken together, this work shows that NMR has the potential to assist the design of peptide/liposome systems and more generally drug delivery systems.


Assuntos
Apelina/química , Lipossomos/química , Lipossomos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Química Farmacêutica , Composição de Medicamentos , Humanos , Cinética
3.
Biophys J ; 108(6): 1527-1536, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809265

RESUMO

Diflavin reductases are bidomain electron transfer proteins in which structural reorientation is necessary to account for the various intramolecular and intermolecular electron transfer steps. Using small-angle x-ray scattering and nuclear magnetic resonance data, we describe the conformational free-energy landscape of the NADPH-cytochrome P450 reductase (CPR), a typical bidomain redox enzyme composed of two covalently-bound flavin domains, under various experimental conditions. The CPR enzyme exists in a salt- and pH-dependent rapid equilibrium between a previously described rigid, locked state and a newly characterized, highly flexible, unlocked state. We further establish that maximal electron flux through CPR is conditioned by adjustable stability of the locked-state domain interface under resting conditions. This is rationalized by a kinetic scheme coupling rapid conformational sampling and slow chemical reaction rates. Regulated domain interface stability associated with fast stochastic domain contacts during the catalytic cycle thus provides, to our knowledge, a new paradigm for improving our understanding of multidomain enzyme function.


Assuntos
Elétrons , NADPH-Ferri-Hemoproteína Redutase/química , Elasticidade , Flavinas/química , Humanos , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Raios X
4.
Int J Mol Sci ; 13(11): 15012-41, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203109

RESUMO

Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.


Assuntos
Transporte de Elétrons/fisiologia , FMN Redutase/química , FMN Redutase/metabolismo , Animais , Humanos , Cinética , Modelos Moleculares , Óxido Nítrico Sintase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA