Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 72: 101544, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33892398

RESUMO

During pregnancy, Toxoplasma gondii can triggers serious manifestations and potentially affect the fetal development. In this scenario, differences in susceptibility of trophoblast cells to T. gondii infection might be evaluated in order to establish new therapeutic approaches capable of interfering in the control of fetal infection by T. gondii. This study aimed to evaluate the susceptibility of cytotrophoblast, syncytiotrophoblast and extravillous trophoblast cells to T. gondii infection. Our data demonstrate that HTR-8/SVneo cells (extravillous trophoblast cells) present higher susceptibility to T. gondii infection when compared to syncytiotrophoblast and cytotrophoblast cells, whereas syncytiotrophoblast was the cell type more resistant to the parasite infection. Also, cytotrophoblast and syncytiotrophoblast cells produced significantly more IL-6 than HTR-8/SVneo cells. On the other hand, HTR-8/SVneo cells showed higher ERK1/2 phosphorylation than cytotrophoblast and syncytiotrophoblast cells. ERK1/2 inhibition reduced T. gondii infection and increased IL-6 production in HTR-8/SVneo cells. Thus, it is plausible to conclude that the greater susceptibility of HTR-8/SVneo cells to infection by T. gondii is related to a higher ERK1/2 phosphorylation and lower levels of IL-6 in these cells compared to other cells, suggesting that these mediators may be important to favor the parasite infection in this type of trophoblastic population.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Gigantes/patologia , Interleucina-6/biossíntese , Toxoplasmose/patologia , Trofoblastos/patologia , Trofoblastos/parasitologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Suscetibilidade a Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Fosforilação , Regulação para Cima
2.
Front Microbiol ; 9: 906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867817

RESUMO

Migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays important roles in physiology, pathology, immunology and parasitology, including the control of infection by protozoa parasites such as Toxoplasma gondii. As the MIF function in congenital toxoplasmosis is not fully elucidated yet, the present study brings new insights for T. gondii infection in the absence of MIF based on pregnant C57BL/6MIF-/- mouse models. Pregnant C57BL/6MIF-/- and C57BL/6WT mice were infected with 05 cysts of T. gondii (ME49 strain) on the first day of pregnancy (dop) and were euthanized at 8 dop. Non-pregnant and non-infected females were used as control. Our results demonstrated that MIF-/- mice have more accentuated change in body weight and succumbed to infection first than their WT counterparts. Otherwise, pregnancy outcome was less destructive in MIF-/- mice compared to WT ones, and the former had an increase in the mast cell recruitment and IDO expression and consequently presented less inflammatory cytokine production. Also, MIF receptor (CD74) was upregulated in MIF-/- mice, indicating that a compensatory mechanism may be required in this model of study. The global absence of MIF was associated with attenuation of pathology in congenital toxoplasmosis, but resulted in female death probably because of uncontrolled infection. Altogether, ours results demonstrated that part of the immune response that protects a pregnant female from T. gondii infection, favors fetal damage.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28798905

RESUMO

Classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic strategies is indispensable to minimize the side effects and improve the control of infection. Previous studies demonstrated that enrofloxacin and toltrazuril reduced the incidence of Neospora caninum and Toxoplasma gondii infection. The aim of the present study was to evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii infection in human trophoblast cells (BeWo line) and in human villous explants from the third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine, or combination of sulfadiazine+pyrimethamine, and the cellular or tissue viability was verified. Next, BeWo cells were infected by T. gondii (2F1 clone or the ME49 strain), whereas villous samples were only infected by the 2F1 clone. Then, infected cells and villous were treated with all antibiotics and the T. gondii intracellular proliferation as well as the cytokine production were analyzed. Finally, we evaluated the direct effect of enrofloxacin and toltrazuril in tachyzoites to verify possible changes in parasite structure. Enrofloxacin and toltrazuril did not decrease the viability of cells and villous in lower concentrations. Both drugs were able to significantly reduce the parasite intracellular proliferation in BeWo cells and villous explants when compared to untreated conditions. Regardless of the T. gondii strain, BeWo cells infected and treated with enrofloxacin or toltrazuril induced high levels of IL-6 and MIF. In villous explants, enrofloxacin induced high MIF production. Finally, the drugs increased the number of unviable parasites and triggered damage to tachyzoite structure. Taken together, it can be concluded that enrofloxacin and toltrazuril are able to control T. gondii infection in BeWo cells and villous explants, probably by a direct action on the host cells and parasites, which leads to modifications of cytokine release and tachyzoite structure.


Assuntos
Antiprotozoários/metabolismo , Fluoroquinolonas/metabolismo , Placenta/parasitologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Triazinas/metabolismo , Trofoblastos/parasitologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Enrofloxacina , Feminino , Humanos , Técnicas de Cultura de Órgãos , Carga Parasitária , Gravidez , Toxoplasma/citologia
4.
Front Microbiol ; 6: 181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806028

RESUMO

Considering that Toxoplasma gondii has shown high genetic diversity in Brazil, the aim of this study was to determine whether Calomys callosus chronically infected by the ME-49 strain might be susceptible to reinfection by these Brazilian strains, including vertical transmission of the parasite. Survival curves were analyzed in non-pregnant females chronically infected with ME-49 and reinfected with the TgChBrUD1 or TgChBrUD2 strain, and vertical transmission was analyzed after reinfection of pregnant females with these same strains. On the 19th day of pregnancy (dop), placentas, uteri, fetuses, liver, spleen, and lung were processed for detection of the parasite. Blood samples were collected for humoral and cellular immune response analyses. All non-pregnant females survived after reinfection and no changes were observed in body weight and morbidity scores. In pregnant females, parasites were detected in the placentas of ME-49 chronically infected females and reinfected females, but were only detected in the fetuses of reinfected females. TgChBrUD2 reinfected females showed more impaired pregnancy outcomes, presenting higher numbers of animals with fetal loss and a higher resorption rate, in parallel with higher levels of pro-inflammatory cytokines and IgG2a subclass antibodies. Vertical transmission resulting from chronic infection of immunocompetent C. callosus is considered a rare event, being attributed instead to either reactivation or reinfection. That is, the pregnancy may be responsible for reactivation of the latent infection or the reinfection may promote T. gondii vertical transmission. Our results clearly demonstrate that, during pregnancy, protection against T. gondii can be breached after reinfection with parasites belonging to different genotypes, particularly when non-clonal strains are involved in this process and in this case the reinfection promoted vertical transmission of both type II and Brazilian T. gondii strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA