Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Soils Sediments ; 22(6): 1648-1661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495078

RESUMO

Purpose: Identifying best practices for sediment fingerprinting or tracing is important to allow the quantification of sediment contributions from catchment sources. Although sediment fingerprinting has been applied with reasonable success, the deployment of this method remains associated with many issues and limitations. Methods: Seminars and debates were organised during a 4-day Thematic School in October 2021 to come up with concrete suggestions to improve the design and implementation of tracing methods. Results: First, we suggest a better use of geomorphological information to improve study design. Researchers are invited to scrutinise all the knowledge available on the catchment of interest, and to obtain multiple lines of evidence regarding sediment source contributions. Second, we think that scientific knowledge could be improved with local knowledge and we propose a scale of participation describing different levels of involvement of locals in research. Third, we recommend the use of state-of-the-art sediment tracing protocols to conduct sampling, deal with particle size, and examine data before modelling and accounting for the hydro-meteorological context under investigation. Fourth, we promote best practices in modelling, including the importance of running multiple models, selecting appropriate tracers, and reporting on model errors and uncertainty. Fifth, we suggest best practices to share tracing data and samples, which will increase the visibility of the fingerprinting technique in geoscience. Sixth, we suggest that a better formulation of hypotheses could improve our knowledge about erosion and sediment transport processes in a more unified way. Conclusion: With the suggested improvements, sediment fingerprinting, which is interdisciplinary in nature, could play a major role to meet the current and future challenges associated with global change. Supplementary information: The online version contains supplementary material available at 10.1007/s11368-022-03203-1.

2.
Sci Total Environ ; 955: 176890, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39419228

RESUMO

The analysis of terrestrial ecosystem carbon dynamics, based on scarce carbon flux observations or carbon flux products simulated by reanalysis meteorological data, has great uncertainties. A more accurate understanding of carbon dynamics in Eurasia was achieved by using a carbon flux dataset (CFD) from meteorological stations with quasi-observational characteristics. The growth of net carbon uptake of ecosystems over Eurasia has been decreasing since the early 2000s. The net ecosystem productivity (NEP) increased significantly with the growth rate of 8.7 × 10-3 g C m-2d-1 yr-1 in spring, summer, and autumn (SSA) during 2003-2011 (p < 0.05), which was correlated with the enhanced vegetation index (EVI) and land surface water index (LSWI). This growth was mostly in dry subhumid and humid regions. However, the change in Eurasian NEP was not significant after 2011. Additionally, about 79 % of the stations in Eurasia were in net carbon uptake in SSA, and net carbon emission stations were mainly located in southwestern Eurasia. The intensity of net carbon uptake was highest in the forest, with a mean carbon uptake of 1.73 ± 0.76 g C m-2d-1 in SSA during 2003-2018, and almost all stations demonstrated carbon uptake. During 2011-2018, the number of stations experiencing reduced NEP exceeded those with increased NEP, and this ratio was higher compared to 2003-2011, mainly due to the decrease in EVI and LSWI. The rate of NEP decline at stations with reduced NEP was 5.2 × 10-3 g C m-2d-1 yr-1 faster during 2011-2018 than in the previous period (p < 0.01). Most of the decreases in NEP during 2011-2018 occurred in cropland, grassland and urban land. The spatio-temporal dynamic analysis of Eurasian NEP could provide references for effective carbon management.

3.
Sci Data ; 10(1): 587, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679357

RESUMO

Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

4.
Sci Total Environ ; 407(8): 2749-55, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155052

RESUMO

A collection of sepia photographs, taken during Great Britain's military expedition to Abyssinia in 1868, are the oldest landscape photographs from northern Ethiopia, and have been used to compare the status of vegetation and land management 140 years ago with that of contemporary times. Thirteen repeat landscape photographs, taken during the dry seasons of 1868 and 2008, were analyzed for various environmental indicators and show a significant improvement of vegetation cover. New eucalypt woodlands, introduced since the 1950s are visible and have provided a valuable alternative for house construction and fuel-wood, but more importantly there has also been locally important natural regeneration of indigenous trees and shrubs. The situation in respect to soil and water conservation measures in farmlands has also improved. According to both historical information and measured climatic data, rainfall conditions around 1868 and in the late 19th century were similar to those of the late 20th/early 21st century. Furthermore, despite a ten-fold increase in population density, land rehabilitation has been accomplished over extensive areas by large-scale implementation of reforestation and terracing activities, especially in the last two decades. In some cases repeat photography shows however that riparian vegetation has been washed away. This is related to river widening in recent degradation periods, particularly in the 1970s-1980s. More recently, riverbeds have become stabilized, and indicate a decreased runoff response. Environmental recovery programmes could not heal all scars, but this study shows that overall there has been a remarkable recovery of vegetation and also improved soil protection over the last 140 years, thereby invalidating hypotheses of the irreversibility of land degradation in semi-arid areas. In a highly degraded environment with high pressure on the land, rural communities were left with no alternative but to improve land husbandry: in northern Ethiopia such interventions have been demonstrably successful.


Assuntos
Conservação dos Recursos Naturais , Clima Desértico , Fotografação , Etiópia , Rios , Estações do Ano , Solo , Árvores/crescimento & desenvolvimento
5.
Sci Total Environ ; 676: 613-626, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31051367

RESUMO

Water resources have an important role in maintaining ecological fuctions and sustaining social and economic development. This is especially true in arid and semi-arid areas, where climate change has a large impact on water resources, such as in Xinjiang, China. Using a combination of precipitation and temperature bias correction methods, we analyzed projected changes in different hydrological components in nine high-alpine catchments distributed in Xinjiang using the Soil and Water Assessment Tool (SWAT). The impacts of elevation, area and aspect of the catchments were analyzed. The results suggested an overall warming and wetting trend for all nine catchments in the near future, with the exception of summer precipitation decreasing in some catchments. The total runoff discharge, evapotranspiration and snow/ice melting will generally increase. Warming temperature plays a more important role in the changes of each hydrological component than increasing precipitation. However, northern Xinjiang was more sensitive to predicted precipitation changes than southern Xinjiang. These results also indicate that the overall increases in water resources are not sustainable, and the impacts of climate change are associated with the elevation, area and slope aspect of the catchments.

6.
PLoS One ; 14(10): e0224041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639144

RESUMO

Knowledge of the geographical distribution of soils is indispensable for policy and decision makers to achieve the goal of increasing agricultural production and reduce poverty, particularly in the Global South. A study was conducted to better understand the soilscapes of the Giba catchment (900-3300 m a.s.l.; 5133 km2) in northern Ethiopia, so as to sustain soil use and management. To characterise the chemical and physical properties of the different benchmark soils and to classify them in line with the World Reference Base of Soil Resources, 141 soil profile pits and 1381 soil augerings at representative sites were analysed. The dominant soil units identified are Leptosol and bare rock (19% coverage), Vertic Cambisol (14%), Regosol and Cambisol (10%), Skeletic/Leptic Cambisol and Regosol (9%), Rendzic Leptosol (7%), Calcaric/Calcic Vertisol (6%), Chromic Luvisol (6%) and Chromic/Pellic Vertisol (5%). Together these eight soil units cover almost 75% of the catchment. Topography and parent material are the major influencing factors that explain the soil distribution. Besides these two factors, land cover that is strongly impacted by human activities, may not be overlooked. Our soil suitability study shows that currently, after thousands of years of agricultural land use, a new dynamic equilibrium has come into existence in the soilscape, in which ca. 40% of the catchment is very suitable, and 25% is moderately suitable for agricultural production. In view of such large suitable areas, the Giba catchment has a good agricultural potential if soil erosion rates can be controlled, soil fertility (particularly nitrogen) increased, available water optimally used, and henceforth crop yields increased.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Solo/química , Etiópia , Nitrogênio/análise
7.
Sci Total Environ ; 536: 996-1006, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26117500

RESUMO

Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus<5%), increases in Poaceae (>40%) and deposition of coarser silt lake sediments (>70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth.


Assuntos
Mudança Climática , Monitoramento Ambiental , Pradaria , Conservação dos Recursos Naturais , Etiópia , Lagos/química
8.
Sci Total Environ ; 485-486: 164-179, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24717722

RESUMO

As quantitative or spatially distributed studies of environmental change over truly long-term periods of more than 100 years are extremely rare, we re-photographed 361 landscapes that appear on historical photographs (1868-1994) within a 40,000 km(2) study area in northern Ethiopia. Visible evidence of environmental changes apparent from the paired photographs was analyzed using an expert rating system. The conditions of the woody vegetation, soil and water conservation structures and land management were worse in the earlier periods compared to their present conditions. The cover by indigenous trees is a notable exception: it peaked in the 1930s, declined afterwards and then achieved a second peak in the early 21st century. Particularly in areas with greater population densities, there has been a significant increase in woody vegetation and soil and water conservation structures over the course of the study period. We conclude that except for an apparent upward movement of the upper tree limit, the direct human impacts on the environment are overriding the effects of climate change in the north Ethiopian highlands and that the northern Ethiopian highlands are currently greener than at any other time in the last 145 years.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Meio Ambiente , Agricultura , Monitoramento Ambiental , Etiópia , Humanos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA