Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2321342121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39374395

RESUMO

Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δ13C) and oxygen (δ18O) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (13C- and 18O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO2 fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.

2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042808

RESUMO

Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (-137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than -70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.

3.
Proc Natl Acad Sci U S A ; 119(27): e2201139119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759667

RESUMO

The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 µg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 µg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 µg C/g was evolved as CO2 and CO (with estimated δ13C = -32.9‰ to -10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.

4.
Nature ; 508(7496): 364-8, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24740066

RESUMO

The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.

6.
Proc Natl Acad Sci U S A ; 112(14): 4245-50, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831544

RESUMO

The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.


Assuntos
Meio Ambiente Extraterreno/química , Sedimentos Geológicos/análise , Marte , Nitrogênio/análise , Nitratos/química , Óxido Nítrico/química , Nitrogênio/química , Temperatura , Água/química , Vento
7.
Geophys Res Lett ; 40(21): 5605-5609, 2013 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-25821261

RESUMO

[1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of 36Ar/38Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that "Mars" meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85-95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase.

8.
Geophys Res Lett ; 40(23): 6033-6037, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26074632

RESUMO

[1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL.

9.
Astrobiology ; 20(2): 292-306, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880468

RESUMO

Chromatographic analysis of the Cumberland mudstone in Gale crater by the Sample Analysis at Mars (SAM) instrument revealed the detection of two to three isomers of dichlorobenzene. Their individual concentrations were estimated to be in the 0.5-17 ppbw range relative to the sample mass. We also report the first detection of trichloromethylpropane and the confirmation of the detection of chlorobenzene previously reported. Supporting laboratory experiments excluded the SAM internal background as the source of those compounds, thus confirming the organic carbon and chlorine of the newly detected chlorohydrocarbons are indigenous to the mudstone sample. Laboratory experiments also demonstrated that the chlorohydrocarbons were mainly produced from chemical reactions occurring in the SAM ovens between organic molecules and oxychlorines contained in the sample. The results we obtained show that meteoritic organics and tested chemical species (a polycyclic aromatic hydrocarbon, an amino acid, and a carboxylic acid) were plausible organic precursors of the chlorinated aromatic molecules detected with SAM, thus suggesting that they could be among the organic molecules present in the mudstone. Results from this study coupled with previously reported detections of chlorinated aromatics (<300 ppbw) indigenous to the same mudstone highlight that organics can be preserved from the harsh surface conditions even at shallow depth. The detection of new chlorohydrocarbons with SAM confirms that organic molecules should have been available in an environment favorable to life forms, strengthening the habitability aspect of Gale crater.


Assuntos
Clorobenzenos/análise , Exobiologia/métodos , Sedimentos Geológicos/química , Marte , Propano/análise , Clorobenzenos/química , Cromatografia Gasosa-Espectrometria de Massas , Propano/química , Astronave , Estereoisomerismo
10.
Science ; 360(6393): 1096-1101, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880683

RESUMO

Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography-mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA