Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 33(7): 2947-60, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407953

RESUMO

The dentate gyrus (DG) is a critical entry point regulating function of the hippocampus. Integral to this role are the sparse, selective activation characteristics of the principal cells of the DG, dentate granule cells (DGCs). This sparse activation is important both in cognitive processing and in regulation of pathological activity in disease states. Using a novel, combined dynamic imaging approach capable of resolving sequentially both synaptic potentials and action potential firing in large populations of DGCs, we characterized the postnatal development of firing properties of DG neurons in response to afferent activation in mouse hippocampal-entorhinal cortical slices. During postnatal development, there was a protracted, progressive sparsification of responses, accompanied by increased temporal precision of activation. Both of these phenomena were primarily mediated by changes in local circuit inhibition, and not by alterations in afferent innervation of DGCs because GABA(A) antagonists normalized developmental differences. There was significant θ and γ frequency-dependent synaptic recruitment of DGC activation in adult, but not developing, animals. Finally, we found that the decision to fire or not fire by individual DGCs was robust and repeatable at all stages of development. The protracted postnatal development of sparse, selective firing properties, increased temporal precision and frequency dependence of activation, and the fidelity with which the decision to fire is made are all fundamental circuit determinants of DGC excitation, critical in both normal and pathological function of the DG.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Animais , Sinalização do Cálcio/fisiologia , Interpretação Estatística de Dados , Giro Denteado/fisiologia , Estimulação Elétrica , Hipocampo/fisiologia , Modelos Logísticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Microscopia Confocal , Neurônios Aferentes/fisiologia , Técnicas de Patch-Clamp , Recrutamento Neurofisiológico/fisiologia , Sinapses/fisiologia
2.
J Neurosci ; 31(47): 16897-906, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22114260

RESUMO

Mossy fiber synapses act as the critical mediators of highly dynamic communication between hippocampal granule cells in the dentate gyrus and CA3 pyramidal neurons. Excitatory synaptic strength at mossy fiber to CA3 pyramidal cell synapses is potentiated rapidly and reversibly by brief trains of low-frequency stimulation of mossy fiber axons. We show that slight modifications to the pattern of stimulation convert this short-term potentiation into prolonged synaptic strengthening lasting tens of minutes in rodent hippocampal slices. This low-frequency potentiation of mossy fiber EPSCs requires postsynaptic mGlu1 receptors for induction but is expressed presynaptically as an increased release probability and therefore impacts both AMPA and NMDA components of the mossy fiber EPSC. A nonconventional signaling pathway initiated by mGlu1 receptors contributes to induction of plasticity, because EPSC potentiation was prevented by a tyrosine kinase inhibitor and only partially reduced by guanosine 5'-O-(2-thiodiphosphate). A slowly reversible state of enhanced synaptic efficacy could serve as a mechanism for altering the integrative properties of this synapse within a relatively broad temporal window.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal/genética , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/genética
3.
J Neurosci ; 31(23): 8533-42, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21653857

RESUMO

General or brain-region-specific decreases in spine number or morphology accompany major neuropsychiatric disorders. It is unclear, however, whether changes in spine density are specific for an individual mental process or disorder and, if so, which molecules confer such specificity. Here we identify the scaffolding protein IQGAP1 as a key regulator of dendritic spine number with a specific role in cognitive but not emotional or motivational processes. We show that IQGAP1 is an important component of NMDAR multiprotein complexes and functionally interacts with the NR2A subunits and the extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling pathway. Mice lacking the IQGAP1 gene exhibited significantly lower levels of surface NR2A and impaired ERK activity compared to their wild-type littermates. Accordingly, primary hippocampal cultures of IQGAP1(-/-) neurons exhibited reduced surface expression of NR2A and disrupted ERK signaling in response to NR2A-dependent NMDAR stimulation. These molecular changes were accompanied by region-specific reductions of dendritic spine density in key brain areas involved in cognition, emotion, and motivation. IQGAP1 knock-outs exhibited marked long-term memory deficits accompanied by impaired hippocampal long-term potentiation (LTP) in a weak cellular learning model; in contrast, LTP was unaffected when induced with stronger stimulation paradigms. Anxiety- and depression-like behavior remained intact. On the basis of these findings, we propose that a dysfunctional IQGAP1 gene contributes to the cognitive deficits in brain disorders characterized by fewer dendritic spines.


Assuntos
Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Memória de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Cognição/fisiologia , Condicionamento Psicológico/fisiologia , Espinhas Dendríticas/genética , Eletrofisiologia , Emoções/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/fisiologia , Imunofluorescência , Imuno-Histoquímica , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Interferente Pequeno , Receptores de N-Metil-D-Aspartato/genética , Coloração pela Prata , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Proteínas Ativadoras de ras GTPase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA