Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Biol ; 13(6): e1002165, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057340

RESUMO

Low reproducibility rates within life science research undermine cumulative knowledge production and contribute to both delays and costs of therapeutic drug development. An analysis of past studies indicates that the cumulative (total) prevalence of irreproducible preclinical research exceeds 50%, resulting in approximately US$28,000,000,000 (US$28B)/year spent on preclinical research that is not reproducible-in the United States alone. We outline a framework for solutions and a plan for long-term improvements in reproducibility rates that will help to accelerate the discovery of life-saving therapies and cures.


Assuntos
Pesquisa Biomédica/economia , Reprodutibilidade dos Testes , Pesquisa Biomédica/normas
5.
J Biol Chem ; 286(16): 14554-63, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21349840

RESUMO

Liver X receptors (LXRs) play a critical role in regulating lipid synthesis and transport in numerous tissues. In the skin, activation of LXR induces keratinocyte differentiation and improves epidermal permeability barrier homeostasis. To elucidate the mechanism of LXR action in skin, we mapped its cistrome by identifying LXRß-RXRα binding sites using ChIP-on-chip in normal human epidermal keratinocytes (NHEKs). The cistrome was integrated with transcription data to obtain a global view of LXR action in keratinocyte biology. Here, we identify 2035 LXRß-RXRα binding sites containing 4794 LXR response elements in NHEKs and show the presence of consensus heterodimer active regions in genes involved in keratinocyte lipid transport/synthesis and terminal differentiation. Bioinformatics analysis of the cistrome revealed an enrichment of AP1 cis-regulatory motifs in the vicinity of the LXRß-RXRα binding sites. Importantly, we have demonstrated a direct interaction between LXR and Jun/Fos, indicating that the cooperation between LXR and AP1 may orchestrate keratinocyte differentiation. Finally, we corroborated these results by genome-wide mapping of the c-Fos and c-Jun cistromes in NHEKs, demonstrating that 77% of all the LXRß-RXRα binding regions show the presence of AP1 motifs at adjacent locations. Our findings provide new insight into the mechanism of LXR action in keratinocyte differentiation, lipid production and barrier formation, further strengthening the validation of LXR as a potential therapeutic target for skin disorders including skin aging, psoriasis, and atopic dermatitis.


Assuntos
Receptores Nucleares Órfãos/química , Receptores X de Retinoides/química , Fator de Transcrição AP-1/química , Animais , Sítios de Ligação , Diferenciação Celular , Dimerização , Regulação da Expressão Gênica , Genoma , Humanos , Queratinócitos/citologia , Receptores X do Fígado , Camundongos , Camundongos Knockout , Transdução de Sinais , Pele/metabolismo
6.
EMBO J ; 27(3): 535-45, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18219273

RESUMO

Estrogen deficiency in menopause is a major cause of osteoporosis in women. Estrogen acts to maintain the appropriate ratio between bone-forming osteoblasts and bone-resorbing osteoclasts in part through the induction of osteoclast apoptosis. Recent studies have suggested a role for Fas ligand (FasL) in estrogen-induced osteoclast apoptosis by an autocrine mechanism involving osteoclasts alone. In contrast, we describe a paracrine mechanism in which estrogen affects osteoclast survival through the upregulation of FasL in osteoblasts (and not osteoclasts) leading to the apoptosis of pre-osteoclasts. We have characterized a cell-type-specific hormone-inducible enhancer located 86 kb downstream of the FasL gene as the target of estrogen receptor-alpha induction of FasL expression in osteoblasts. In addition, tamoxifen and raloxifene, two selective estrogen receptor modulators that have protective effects in bone, induce apoptosis in pre-osteoclasts by the same osteoblast-dependent mechanism. These results demonstrate that estrogen protects bone by inducing a paracrine signal originating in osteoblasts leading to the death of pre-osteoclasts and offer an important new target for the prevention and treatment of osteoporosis.


Assuntos
Osso e Ossos/metabolismo , Estrogênios/fisiologia , Proteína Ligante Fas/biossíntese , Proteína Ligante Fas/fisiologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Células 3T3 , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Proteína Ligante Fas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Receptor fas/fisiologia
7.
J Biol Chem ; 285(22): 17054-64, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20356837

RESUMO

Selective androgen receptor modulators (SARMs) are androgen receptor (AR) ligands that induce anabolism while having reduced effects in reproductive tissues. In various experimental contexts SARMs fully activate, partially activate, or even antagonize the AR, but how these complex activities translate into tissue selectivity is not known. Here, we probed receptor function using >1000 synthetic AR ligands. These compounds produced a spectrum of activities in each assay ranging from 0 to 100% of maximal response. By testing different classes of compounds in ovariectomized rats, we established that ligands that transactivated a model promoter 40-80% of an agonist, recruited the coactivator GRIP-1 <15%, and stabilized the N-/C-terminal interdomain interaction <7% induced bone formation with reduced effects in the uterus and in sebaceous glands. Using these criteria, multiple SARMs were synthesized including MK-0773, a 4-aza-steroid that exhibited tissue selectivity in humans. Thus, AR activated to moderate levels due to reduced cofactor recruitment, and N-/C-terminal interactions produce a fully anabolic response, whereas more complete receptor activation is required for reproductive effects. This bimodal activation provides a molecular basis for the development of SARMs.


Assuntos
Androgênios/metabolismo , Azasteroides/farmacologia , Antagonistas de Hormônios/farmacologia , Receptores Androgênicos/química , Transcrição Gênica , Animais , Azasteroides/química , Células COS , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Chlorocebus aethiops , Desenho de Fármacos , Feminino , Humanos , Ligantes , Masculino , Modelos Biológicos , Estrutura Terciária de Proteína , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroides/metabolismo , Ativação Transcricional
8.
Mol Pharmacol ; 78(6): 1046-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837678

RESUMO

The liver X receptors (LXRα and LXRß) are members of the nuclear receptor superfamily that function as key transcriptional regulators of a number of biological processes, including cholesterol homeostasis, lipid metabolism, and keratinocyte differentiation. Natural ligands that activate LXRs include oxysterol derivatives such as 25-hydroxycholesterol, 27-hydroxycholesterol, 22(R)-hydroxycholesterol, 20(S)-hydroxycholesterol, and 24(S),25-epoxycholesterol. Related oxysterols, such as 5α,6α-epoxycholesterol (5,6-EC) are present in a number of foods and have been shown to induce atherosclerosis in animal models. Intriguingly, these oxysterols have also been detected in atherosclerotic plaques. Using a variety of biochemical and cellular assays, we demonstrate that 5,6-EC is the first dietary modulator and an endogenous LXR ligand with cell and gene context-dependent antagonist, agonist, and inverse agonist activities. In a multiplexed LXR-cofactor peptide interaction assay, 5,6-EC induced the recruitment of a number of cofactor peptides onto both LXRα and LXRß and showed an EC(50) of approximately 2 µM in peptide recruitment. Furthermore, 5,6-EC bound to LXRα in a radiolabeled ligand displacement assay (EC(50) = 76 nM), thus demonstrating it to be one of the most potent natural LXRα ligands known to date. Analysis of endogenous gene expression in various cell-based systems indicated the potential of 5,6-EC to antagonize LXR-mediated gene expression. Furthermore, it also induced the expression of some LXR-responsive genes in keratinocytes. These results clearly demonstrate that 5,6-EC is an LXR modulator that may play a role in the development of lipid disorders, such as atherosclerosis, by antagonizing the agonistic action of endogenous LXR ligands.


Assuntos
Colesterol/análogos & derivados , Receptores Nucleares Órfãos/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Colesterol/fisiologia , Humanos , Receptores X do Fígado , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/deficiência , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
9.
Mol Pharmacol ; 77(5): 744-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20110405

RESUMO

One of the many harmful factors faced by the skin is solar UV radiation, which damages skin by inducing chronic low-grade inflammation through increased expression of proinflammatory cytokines, metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). Estrogen receptors (ERs) alpha and beta are ligand-dependent transcription factors that are expressed in skin, and an ERbeta agonist has previously shown efficacy in vivo in models of pain and inflammation. Because ERbeta does not carry the breast and uterine proliferation liabilities of ERalpha, we decided to explore the possibility of using ERbeta as a target for photoaging. We show that ERbeta-selective compounds suppressed the expression of cytokines and MMPs in activated keratinocytes and fibroblast-based in vitro models of photoaging. Furthermore, in activated dermal fibroblasts, ERbeta-selective compounds also inhibited COX-2. These activities of ERbeta ligands in skin cells correlated with the expression levels of ERbeta and showed reversal by treatment with a potent synthetic ER antagonist. Furthermore, the pharmacology of ERbeta-selective compound was observed in wild-type but not in skin cells obtained from ERbeta knockout mice. Finally, we demonstrate that a synthetic ERbeta agonist inhibited UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the potential of an ERbeta ligand to regulate multiple pathways underlying the cause of photoaging suggests ERbeta to be a novel therapeutic target for the prevention and treatment of photoaging.


Assuntos
Receptor beta de Estrogênio/fisiologia , Envelhecimento/efeitos da radiação , Animais , Citocinas/genética , Receptor beta de Estrogênio/deficiência , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Feminino , Fibroblastos/fisiologia , Humanos , Ligantes , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Pelados , Camundongos Knockout , Envelhecimento da Pele/genética , Envelhecimento da Pele/fisiologia , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos
10.
Mol Cell Biol ; 27(5): 1904-13, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17194752

RESUMO

Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.


Assuntos
Estrogênios/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Alanina/metabolismo , Substituição de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Tirosina/metabolismo , Quinases da Família src/metabolismo
11.
Mol Cell Biol ; 27(21): 7486-96, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17709391

RESUMO

The orphan nuclear receptor Nurr1 is essential for the development and maintenance of midbrain dopaminergic neurons, the cells that degenerate during Parkinson's disease, by promoting the transcription of genes involved in dopaminergic neurotransmission. Since Nurr1 lacks a classical ligand-binding pocket, it is not clear which factors regulate its activity and how these factors are affected during disease pathogenesis. Since Wnt signaling via beta-catenin promotes the differentiation of Nurr1(+) dopaminergic precursors in vitro, we tested for functional interactions between these systems. We found that beta-catenin and Nurr1 functionally interact at multiple levels. In the absence of beta-catenin, Nurr1 is associated with Lef-1 in corepressor complexes. Beta-catenin binds Nurr1 and disrupts these corepressor complexes, leading to coactivator recruitment and induction of Wnt- and Nurr1-responsive genes. We then identified KCNIP4/calsenilin-like protein as being responsive to concurrent activation by Nurr1 and beta-catenin. Since KCNIP4 interacts with presenilins, the Alzheimer's disease-associated proteins that promote beta-catenin degradation, we tested the possibility that KCNIP4 induction regulates beta-catenin signaling. KCNIP4 induction limited beta-catenin activity in a presenilin-dependent manner, thereby serving as a negative feedback loop; furthermore, Nurr1 inhibition of beta-catenin activity was absent in PS1(-/-) cells or in the presence of small interfering RNAs specific to KCNIP4. These data describe regulatory convergence between Nurr1 and beta-catenin, providing a mechanism by which Nurr1 could be regulated by Wnt signaling.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Wnt/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Presenilina-1/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Repressoras/metabolismo , beta Catenina/metabolismo
12.
Mol Endocrinol ; 23(1): 74-85, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19036900

RESUMO

The use of estrogen-based therapies and the selective estrogen receptor (ER) modulator (SERM), raloxifene, which are approved for postmenopausal osteoporosis, is associated with side effects such as uterine/breast hyperproliferation, thromboembolism, and hot flashes. A combination of a new SERM, bazedoxifene (BZA), and Premarin (conjugated estrogens; CE) is under investigation to mitigate the estrogen/SERM side effects with promising results in Phase III clinical trials. To explore the mechanism of BZA/CE action, we investigated the recruitment of cofactor peptides to ERalpha by components of CE and a mixture containing the 10 major components of CE with or without three different SERMs. Here, we demonstrate differential recruitment of cofactor peptides to ERalpha by the individual CE components using a multiplex nuclear receptor-cofactor peptide interaction assay. We show that estrone and equilin are partial agonists in comparison with 17beta-estradiol in recruiting cofactor peptides to ERalpha. Further, CE was more potent than 17beta-estradiol in mediating ERalpha interaction with cofactor peptides. Interestingly, BZA was less potent than other SERMs in antagonizing the CE-mediated cofactor peptide recruitment to ERalpha. Finally, in accordance with these biochemical findings, 17beta-estradiol and CE, as well as SERM/CE combinations, showed differential gene regulation patterns in MCF-7 cells. In addition, BZA showed antagonism of a unique set of CE-regulated genes and did not down-regulate the expression of a number of CE-regulated genes, the expression of which was effectively antagonized by the other two SERMs. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same beneficial effects that are observed in clinic by pairing BZA with CE.


Assuntos
Estrogênios Conjugados (USP)/farmacologia , Indóis/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/efeitos adversos , Conservadores da Densidade Óssea/farmacologia , Linhagem Celular , Interações Medicamentosas , Quimioterapia Combinada , Estradiol/administração & dosagem , Estradiol/efeitos adversos , Estradiol/farmacologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estrogênios Conjugados (USP)/administração & dosagem , Estrogênios Conjugados (USP)/efeitos adversos , Feminino , Perfilação da Expressão Gênica , Humanos , Indóis/administração & dosagem , Indóis/efeitos adversos , Ligantes , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Moduladores Seletivos de Receptor Estrogênico/efeitos adversos , Ativação Transcricional/efeitos dos fármacos
13.
Mol Endocrinol ; 22(11): 2407-19, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18787039

RESUMO

Liver X receptors (LXRalpha and -beta) are liposensors that exert their metabolic effects by orchestrating the expression of macrophage genes involved in lipid metabolism and inflammation. LXRs are also expressed in other tissues, including skin, where their natural oxysterol ligands induce keratinocyte differentiation and improve epidermal barrier function. To extend the potential use of LXR ligands to dermatological indications, we explored the possibility of using LXR as a target for skin aging. We demonstrate that LXR signaling is down-regulated in cell-based models of photoaging, i.e. UV-activated keratinocytes and TNFalpha-activated dermal fibroblasts. We show that a synthetic LXR ligand inhibits the expression of cytokines and metalloproteinases in these in vitro models, thus indicating its potential in decreasing cutaneous inflammation associated with the etiology of photoaging. Furthermore, a synthetic LXR ligand induces the expression of differentiation markers, ceramide biosynthesis enzymes, and lipid synthesis and transport genes in keratinocytes. Remarkably, LXRbeta-null mouse skin showed some of the molecular defects that are observed in chronologically aged human skin. Finally, we demonstrate that a synthetic LXR agonist inhibits UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the ability of an LXR ligand to modulate multiple pathways underlying the etiology of skin aging suggests that LXR is a novel target for developing potential therapeutics for photoaging and chronological skin aging indications.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Envelhecimento da Pele/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Técnicas In Vitro , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Ligantes , Metabolismo dos Lipídeos/genética , Receptores X do Fígado , Camundongos , Camundongos Pelados , Camundongos Knockout , Modelos Biológicos , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Envelhecimento da Pele/patologia
14.
Mol Cell Biol ; 25(2): 797-807, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15632079

RESUMO

To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Chaperonas Moleculares/metabolismo , Moldes Genéticos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fracionamento Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA , Genes Reporter , Células HeLa , Chaperonas de Histonas , Humanos , Chaperonas Moleculares/genética , RNA Polimerase II/metabolismo , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética
15.
Steroids ; 73(9-10): 901-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18261753

RESUMO

Estrogens play a critical role in the regulation of cellular proliferation, differentiation, and apoptosis. Evidence indicates that this regulation is mediated by a complex interface of direct control of gene expression (so-called "genomic action") and by regulation of cell-signaling/phosphorylation cascades (referred to as the "non-genomic", or "extranuclear" action). However, the mechanisms of the non-genomic action of estrogens are not well defined. We have recently described the identification of a novel scaffold protein termed MNAR (modulator of non-genomic action of estrogen receptor), that couples conventional steroid receptors with extranuclear signal transduction pathways, thus potentially providing additional and tissue- or cell-specific level of steroid hormone regulation of cell functions. We have demonstrated that the MNAR is required for ER alpha (ERa) interaction with p60(src) (Src), which leads to activation of Src/MAPK pathway. Our new data also suggest that activation of cSrc in response to E2 leads to MNAR phosphorylation, interaction with p85, and activation of the PI3 and Akt kinases. These data therefore suggest that MNAR acts as an important scaffold that integrates ERa action in regulation of important signaling pathways. ERa non-genomic action has been suggested to play a key role in estrogen-induced cardio-, neuro-, and osteo-protection. Therefore, evaluation of the molecular crosstalk between MNAR and ERa may lead to development of functionally selective ER modulators that can separate between beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS and the "detrimental", proliferative effects in reproductive tissues and organs.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Transativadores/fisiologia , Quinases da Família src/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Correpressoras , Ativação Enzimática , Humanos , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Transativadores/metabolismo , Fatores de Transcrição
16.
J Cell Physiol ; 213(3): 610-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17886255

RESUMO

By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell-type and tissue-type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the "detrimental," proliferative effects in reproductive tissues and organs.


Assuntos
Estrogênios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antagonistas de Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Modelos Biológicos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia
17.
Curr Opin Investig Drugs ; 8(10): 821-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17907058

RESUMO

Androgens play an important role not only in male sexual differentiation, puberty, sexual behavior and spermatogenesis, but also in the maintenance of bone architecture and muscle mass and strength. For decades, steroidal androgens have been used by hypogonadal and aging men as hormone replacement therapy, and abused by prominent athletes as anabolic agents for enhancing physical performance. The use of steroidal androgens is associated with hepatotoxicity, potential for prostate stimulation, virilizing actions and other side effects resulting from their cross-reactivity to related steroid receptors. Therefore, to utilize the therapeutic potential of the androgen receptor for the treatment of indications such as osteoporosis and frailty, several pharmaceutical and biotechnology companies are developing non-steroidal tissue-selective androgen receptor modulators (SARMs) that retain the beneficial properties of natural androgens and exhibit better therapeutic indices. This article reviews the mechanism of androgen action, novel non-steroidal ligands under development and future directions of SARM research for the discovery of novel modulators for frailty and osteoporosis.


Assuntos
Antagonistas de Receptores de Andrógenos , Androgênios , Idoso Fragilizado , Osteoporose/tratamento farmacológico , Idoso de 80 Anos ou mais , Animais , Feminino , Terapia de Reposição Hormonal , Humanos , Masculino , Osteoporose Pós-Menopausa/tratamento farmacológico , Congêneres da Testosterona/farmacologia , Congêneres da Testosterona/uso terapêutico
18.
Mol Cell Biol ; 23(2): 620-8, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509459

RESUMO

The interferon (IFN)-induced signal transduction and transcription activation complex, ISGF3, is assembled from three proteins, STAT1, STAT2, and IRF9. Of these components, STAT2 provides a fundamental and essential transcriptional activation function for ISGF3. In the present study, we show that ISGF3-mediated transcription is dependent on STAT2 interactions with DRIP150, a subunit of the multimeric Mediator coactivator complex. Other Mediator subunits, DRIP77 and DRIP130, were found either to bind STAT2 without augmenting ISGF3 transcriptional activity or to enhance ISGF3 transcription without binding STAT2, but only DRIP150 both enhanced IFN-dependent transcription and coimmunoprecipitated with STAT2. Endogenous DRIP150 and STAT2 were able to interact in solution, and DNA affinity chromatography and chromatin immunoprecipitation assays demonstrated that DRIP150 binds to the mature, activated ISGF3-DNA complex and is recruited to target gene promoters in an IFN-dependent fashion. IFN-dependent recruitment of DRIP130 to an ISGF3 target promoter and SRB10-STAT2 coprecipitation suggest indirect association with a multisubunit Mediator complex. The site of STAT2 interaction was mapped to DRIP150 residues 188 to 566, which are necessary and sufficient for interaction with STAT2. Expression of this DRIP150 fragment, but not DRIP150 fragments outside the STAT2 interaction region, suppressed ISGF3-mediated transcriptional activity in a dominant-negative fashion, suggesting a direct functional role of this domain in mediating STAT2-DRIP150 interactions. These findings indicate that the IFN-activated ISGF3 transcription factor regulates transcription through contact with DRIP150 and implicate the Mediator coactivator complex in IFN-activated gene regulation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interferons/farmacologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular , Cromatina/metabolismo , DNA/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Genes Reporter , Células HeLa , Humanos , Immunoblotting , Fator Gênico 3 Estimulado por Interferon , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Interferons/metabolismo , Complexo Mediador , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Subunidades Proteicas/metabolismo , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Transativadores/metabolismo , Ativação Transcricional , Transfecção
19.
Mol Cell Biol ; 24(18): 8288-300, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15340088

RESUMO

Requisite levels of intracellular cholesterol and fatty acids are maintained in part by the sterol regulatory element binding proteins (SREBPs). Three major SREBP isoforms exist; SREBP-1a and SREBP-1c are expressed from overlapping mRNAs, whereas SREBP-2 is encoded by a separate gene. The active forms of SREBP-1a and SREBP-1c differ only at their extreme N termini; SREBP-1c lacks 28 aa present in SREBP-1a and instead contains 4 unique aa of its own. While the SREBP-1a and -1c isoforms differentially activate transcription, the molecular basis of this difference is unknown. Here we define the differences between these proteins that confer the enhanced activity of SREBP-1a and demonstrate that this enhancement is a direct result of its avid binding to the coactivator CREB binding protein (CBP) and the mammalian mediator complex. While previous work determined that the C/H1 zinc finger and KIX domains of CBP bind to SREBP-1a, we provide evidence that the interaction with C/H1 is important for gene activation. We further show that the association between the activation domain of SREBP-1 and mediator is through aa 500 to 824 of DRIP150. Finally, we demonstrate the recruitment of mediator to an SREBP-responsive promoter in a sterol-dependent manner.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Corticosterona , Humanos , Dados de Sequência Molecular , Mutagênese , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1 , Esteróis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
20.
Trends Endocrinol Metab ; 17(7): 284-90, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16870465

RESUMO

Nuclear receptors represent novel targets for the development of therapeutic agents for the treatment of numerous diseases, including type 2 diabetes, obesity dyslipidemia, atherosclerosis and the metabolic syndrome. There have been many recent advances in the development of new therapeutic agents for a subset of these receptors, including the peroxisome proliferator-activated receptors, the liver X receptors and the farnesoid X receptor. To date, the synthesis of selective modulators that regulate the activity of these receptors has been empirical. However, a detailed understanding of the molecular basis for selective modulation, as well as new insights into the biology of these receptors, might open the door to the rational design of a new generation of therapeutic agents with improved safety and efficacy.


Assuntos
Sistemas de Liberação de Medicamentos , Doenças Metabólicas/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Proteínas de Ligação a DNA/fisiologia , Humanos , Receptores X do Fígado , Doenças Metabólicas/fisiopatologia , Receptores Nucleares Órfãos , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Proteínas de Ligação a RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA