Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(11): 4406-10, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368117

RESUMO

Bdelloid rotifers are important contributors to biogeochemical cycling and trophic dynamics of both aquatic and terrestrial ecosystems, but little is known about their biogeographic distribution and community structure in terrestrial environments. This lack of knowledge stems from a lack of phylogenetic information and assumptions that microbial eukaryotes are globally distributed and have very limited diversity across vast geographic distances. However, these assumptions have been based more on assessments of their morphology than any measure of their true genetic diversity and biogeographic distribution. We developed specific primers for the cytochrome c oxidase subunit 1 (cox1) gene of bdelloid rotifers and amplified and cloned sequences using a nested sampling scheme that represented local (0-10 m) to global (up to 10,000 km) scales. Using phylogenetic community analyses (UniFrac) and geospatial statistics (semivariograms, mantel tests), we were able to reject the hypothesis that communities of rotifers are the same across even fairly small geographic distances. Bdelloid communities showed highly significant spatial structuring with spatial autocorrelation ranges of 54-133 m, but beyond that distance communities were extremely dissimilar. Furthermore, we show that these spatial patterns are driven not only by changes in relative abundance of phylotypes but also by absolute changes in phylotype occurrence (richness). There is almost no overlap in phylotype [or operational taxonomic unit (OTU)] occurrence between communities at distances beyond the autocorrelation range (~133 m). Such small species ranges, combined with their ubiquity in soils, make it increasingly clear that the biodiversity of bdelloid rotifers (and other less easily dispersed microbes) is much higher than previously thought.


Assuntos
Biodiversidade , Rotíferos/genética , Solo/parasitologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Geografia , Modelos Biológicos , Dados de Sequência Molecular , Rotíferos/enzimologia
2.
Front Plant Sci ; 11: 784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595675

RESUMO

Despite growing understanding of how rising temperatures affect carbon cycling, the impact of long-term and whole forest warming on the suite of essential and potentially limiting nutrients remains understudied, particularly for elements other than N and P. Whole ecosystem warming experiments are limited, environmental gradients are often confounded by variation in factors other than temperature, and few studies have been conducted in the tropics. We examined litterfall, live foliar nutrient content, foliar nutrient resorption efficiency (NRE), nutrient return, and foliar nutrient use efficiency (NUE) of total litterfall and live foliage of two dominant trees to test hypotheses about how increasing mean annual temperature (MAT) impacts the availability and ecological stoichiometry of C, N, P, K, Ca, Mg, Mn, Fe, Zn, and Cu in tropical montane wet forests located along a 5.2°C gradient in Hawaii. Live foliage responded to increasing MAT with increased N and K concentrations, decreased C and Mn concentrations, and no detectable change in P concentration or in foliar NRE. Increases in MAT increased nutrient return via litterfall for N, K, Mg, and Zn and foliar NUE for Mn and Cu, while decreasing nutrient return for Cu and foliar NUE for K. The N:P of litterfall and live foliage increased with MAT, while there was no detectable effect of MAT on C:P. The ratio of live foliar N or P to base cations and micronutrients was variable across elements and species. Increased MAT resulted in declining N:K and P:K for one species, while only P:K declined for the other. N:Ca and N:Mn increased with MAT for both species, while N:Mg increased for one and P:Mn increased for the other species. Overall, results from this study suggest that rising MAT in tropical montane wet forest: (i) increases plant productivity and the cycling and availability of N, K, Mg, and Zn; (ii) decreases the cycling and availability of Mn and Cu; (iii) has little direct effect on P, Ca or Fe; and (iv) affects ecological stoichiometry in ways that may exacerbate P-as well as other base cation and micronutrient - limitations to tropical montane forest productivity.

3.
Environ Microbiol ; 11(3): 674-86, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19187281

RESUMO

Soil-dominated ecosystems, with little or no plant cover (i.e. deserts, polar regions, high-elevation areas and zones of glacial retreat), are often described as 'barren', despite their potential to host photoautotrophic microbial communities. In high-elevation, subnival zone soil (i.e. elevations higher than the zone of continuous vegetation), the structure and function of these photoautotrophic microbial communities remains essentially unknown. We measured soil CO(2) flux at three sites (above 3600 m) and used molecular techniques to determine the composition and distribution of soil photoautotrophs in the Colorado Front Range. Soil CO(2) flux data from 2002 and 2007 indicate that light-driven CO(2) uptake occurred on most dates. A diverse community of Cyanobacteria, Chloroflexi and eukaryotic algae was present in the top 2 cm of the soil, whereas these clades were nearly absent in deeper soils (2-4 cm). Cyanobacterial communities were composed of lineages most closely related to Microcoleus vaginatus and Phormidium murrayi, eukaryotic photoautotrophs were dominated by green algae, and three novel clades of Chloroflexi were also abundant in the surface soil. During the light hours of the 2007 snow-free measurement period, CO(2) uptake was conservatively estimated to be 23.7 g C m(-2) season(-1). Our study reveals that photoautotrophic microbial communities play an important role in the biogeochemical cycling of subnival zone soil.


Assuntos
Dióxido de Carbono/metabolismo , Chloroflexi/isolamento & purificação , Cianobactérias/isolamento & purificação , Eucariotos/isolamento & purificação , Fotossíntese , Microbiologia do Solo , Chloroflexi/classificação , Chloroflexi/metabolismo , Análise por Conglomerados , Colorado , Cianobactérias/classificação , Cianobactérias/metabolismo , DNA de Algas/química , DNA de Algas/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/classificação , Eucariotos/metabolismo , Genes de RNAr , Luz , Dados de Sequência Molecular , Filogenia , RNA de Algas/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
4.
BMC Ecol ; 9: 25, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20003362

RESUMO

BACKGROUND: The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms.Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. RESULTS: The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. CONCLUSION: The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils.


Assuntos
Primers do DNA/genética , DNA/genética , Eucariotos/genética , Solo/análise , Animais , DNA/isolamento & purificação , DNA Ribossômico/genética , Eucariotos/classificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Rotíferos/classificação , Rotíferos/genética , Análise de Sequência de DNA
5.
Environ Microbiol ; 10(11): 3093-105, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18764871

RESUMO

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Carbono/metabolismo , Fertilizantes , Fungos/classificação , Nitrogênio/metabolismo , Microbiologia do Solo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Dados de Sequência Molecular , Compostos Orgânicos/análise , Filogenia , Análise de Sequência de DNA , Solo/análise
6.
Nat Commun ; 1: 53, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20975720

RESUMO

Soil microorganisms dominate terrestrial biogeochemical cycles; however, we know very little about their spatial distribution and how changes in the distributions of specific groups of microbes translate into landscape and global patterns of biogeochemical processes. In this paper, we use a nested sampling scheme at scales ranging from 2 to 2,000 m to show that bacteria have significant spatial autocorrelation in community composition up to a distance of 240 m, and that this pattern is driven by changes in the relative abundance of specific bacterial clades across the landscape. Analysis of clade habitat distribution models and spatial co-correlation maps identified soil pH, plant abundance and snow depth as major variables structuring bacterial communities across this landscape, and revealed an unexpected and important oligotrophic niche for the Rhodospirillales in soil. Furthermore, our global analysis of high-elevation soils from the Andes, Rockies, Himalayas and Alaskan range shows that habitat distribution models for bacteria have a strong predictive power across the entire globe.


Assuntos
Bactérias/genética , Microbiologia do Solo , Bactérias/classificação , Biodiversidade , Geografia , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA