Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304031

RESUMO

Neuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system. Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated. Treatment of these cells with ellipticine in combination with VPA led to the synergism of their anticancer efficacy. The effect is more pronounced in the UKF-NB-4 cell line, the line with N-myc amplification, than in SH-SY5Y cells. This was associated with caspase-3-dependent induction of apoptosis in UKF-NB-4 cells. The increase in cytotoxicity of ellipticine in UKF-NB-4 by VPA is dictated by the sequence of drug administration; the increased cytotoxicity was seen only after either simultaneous exposure to these drugs or after pretreatment of cells with ellipticine before their treatment with VPA. The synergism of treatment of cells with VPA and ellipticine seems to be connected with increased acetylation of histones H3 and H4. Further, co-treatment of cells with ellipticine and VPA increased the formation of ellipticine-derived DNA adducts, which indicates an easier accessibility of ellipticine to DNA in cells by its co-treatment with VPA and also resulted in higher ellipticine cytotoxicity. The results are promising for in vivo studies and perhaps later for clinical studies of combined treatment of children suffering from high-risk NBL.


Assuntos
Elipticinas/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Mutagênicos/toxicidade , Neurônios/efeitos dos fármacos , Ácido Valproico/toxicidade , Apoptose , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neuroblastoma/metabolismo , Neurônios/metabolismo
2.
Chem Res Toxicol ; 29(8): 1325-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27404282

RESUMO

Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo-B(5) Redutase/metabolismo , Adutos de DNA/metabolismo , Humanos , Oxirredução
3.
Neuro Endocrinol Lett ; 37(Suppl1): 95-102, 2016 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-28263536

RESUMO

OBJECTIVES: Ellipticine is an anticancer agent that functions through multiple mechanisms participating in cell cycle arrest and initiation of apoptosis. This drug forms covalent DNA adducts after its enzymatic activation with cytochrome P450 (CYP), which is one of the most important ellipticine DNA-damaging mechanisms of its cytotoxic effects. The improvements of cancer treatment are the major challenge in oncology research. Nanotransporters (nanoparticles) are promising approaches to target tumor cells, frequently leading to improve drug therapeutic index. Ellipticine has already been prepared in nanoparticle forms. However, since its anticancer efficiency depends on the CYP3A4-mediated metabolism in cancer cells, the aim of our research is to develop nanoparticles containing this enzyme that can be transported to tumor cells, thereby potentiating ellipticine cytotoxicity. METHODS: The CYP3A4 enzyme encapsulated into two nanoparticle forms, liposomes and microsomes, was tested to activate ellipticine to its reactive species forming covalent DNA adducts. Ellipticine-derived DNA adducts were determined by the 32P-postlabeling method. RESULTS: The CYP3A4 enzyme both in the liposome and microsome nanoparticle forms was efficient to activate ellipticine to species forming DNA adducts. Two DNA adducts, which are formed from ellipticine metabolites 12-hydroxy- and 13-hydroxyellipticine generated by its oxidation by CYP3A4, were formed by both CYP3A4 nanoparticle systems. A higher effectiveness of CYP3A4 in microsomal than in liposomal nanoparticles to form ellipticine-DNA adducts was found. CONCLUSION: Further testing in a suitable cancer cell model is encouraged to investigate whether the DNA-damaging effects of ellipticine after its activation by CYP3A4 nanoparticle forms are appropriate for active targeting of this enzyme to specific cancer cells.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Adutos de DNA/metabolismo , Elipticinas/metabolismo , Lipossomos , Microssomos , Humanos
4.
Int J Mol Sci ; 17(2): 213, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26861298

RESUMO

Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H: quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using (32)P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast, the formation of AAI-DNA adducts was catalyzed by CYP1B1 with the A133S mutation. Our experimental model confirms the importance of the hydroxyl group possessing amino acids in the active center of CYP1A1 and 1A2 for AAI nitroreduction.


Assuntos
Ácidos Aristolóquicos/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Domínio Catalítico/genética , Mutação , Catálise , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1B1 , Adutos de DNA/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Oxirredução , Proteínas Recombinantes , Especificidade por Substrato
5.
Drug Metab Rev ; 47(2): 199-221, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25686853

RESUMO

In humans, the liver is generally considered to be the major organ contributing to drug metabolism, but studies during the last years have suggested an important role of the extra-hepatic drug metabolism. The gastrointestinal tract (GI-tract) is the major path of entry for a wide variety of compounds including food, and orally administered drugs, but also compounds - with neither nutrient nor other functional value - such as carcinogens. These compounds are metabolized by a large number of enzymes, including the cytochrome P450 (CYP), the glutathione S-transferase (GST) family, the uridine 5'-diphospho- glucuronosyltransferase (UDP-glucuronosyltransferase - UGT) superfamily, alcohol-metabolizing enzymes, sulfotransferases, etc. These enzymes can either inactivate carcinogens or, in some cases, generate reactive species with higher reactivity compared to the original compound. Most data in this field of research originate from animal or in vitro studies, wherein human studies are limited. Here, we review the human studies, in particular the studies on the phenotypic expression of these enzymes in the colon and rectum to get an impression of the actual enzyme levels in this primary organ of exposure. The aim of this review is to give a summary of currently available data on the relation between the CYP, the GST and the UGT biotransformation system and colorectal cancer obtained from clinical and epidemiological studies in humans.


Assuntos
Colo/metabolismo , Neoplasias Colorretais/metabolismo , Reto/metabolismo , Xenobióticos/farmacocinética , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Biotransformação , Colo/enzimologia , Neoplasias Colorretais/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Reto/enzimologia , Sulfotransferases/genética , Sulfotransferases/metabolismo
6.
Arch Toxicol ; 89(11): 2141-58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209566

RESUMO

Exposure to the plant nephrotoxin and carcinogen aristolochic acid (AA) leads to the development of AA nephropathy, Balkan endemic nephropathy (BEN) and upper urothelial carcinoma (UUC) in humans. Beside AA, exposure to ochratoxin A (OTA) was linked to BEN. Although OTA was rejected as a factor for BEN/UUC, there is still no information whether the development of AA-induced BEN/UUC is influenced by OTA exposure. Therefore, we studied the influence of OTA on the genotoxicity of AA (AA-DNA adduct formation) in vivo. AA-DNA adducts were formed in liver and kidney of rats treated with AA or AA combined with OTA, but no OTA-related DNA adducts were detectable in rats treated with OTA alone or OTA combined with AA. Compared to rats treated with AA alone, AA-DNA adduct levels were 5.4- and 1.6-fold higher in liver and kidney, respectively, of rats treated with AA combined with OTA. Although AA and OTA induced NAD(P)H: quinone oxidoreductase (NQO1) activating AA to DNA adducts, their combined treatment did not lead to either higher NQO1 enzyme activity or higher AA-DNA adduct levels in ex vivo incubations. Oxidation of AA I (8-methoxy-6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid) to its detoxification metabolite, 8-hydroxyaristolochic acid, was lower in microsomes from rats treated with AA and OTA, and this was paralleled by lower activities of cytochromes P450 1A1/2 and/or 2C11 in these microsomes. Our results indicate that a decrease in AA detoxification after combined exposure to AA and OTA leads to an increase in AA-DNA adduct formation in liver and kidney of rats.


Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/efeitos dos fármacos , Ocratoxinas/farmacologia , Animais , Ácidos Aristolóquicos/metabolismo , Carcinógenos/metabolismo , Inativação Metabólica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Ratos , Ratos Wistar
7.
Neuro Endocrinol Lett ; 36 Suppl 1: 22-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757112

RESUMO

OBJECTIVES: The improvements of cancer treatment are the major challenge in oncology research. Nanocarriers are one of the promising approaches to selectively target tumor cells, frequently leading to improve drug therapeutic index. Ellipticine is an anticancer agent that functions through multiple mechanisms. Here, the toxic effects of an anticancer drug ellipticine encapsulated in a micellar nanotransporter and free ellipticine on human HL-60 leukemia cells and formation of ellipticine-derived DNA adducts by both forms of the drug in these cells were investigated. METHODS: The toxicity of modified ellipticine on cells was compared to that of free ellipticine using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide cytotoxicity assay. 32P-postlabeling was utilized to determine ellipticine-DNA adducts in treated cells. RESULTS: The comparison of efficiencies of free ellipticine and ellipticine-micelles [the poly(ethylene oxide)-block-poly(allyl glycidyl ether) block copolymer] to form ellipticine-derived DNA adducts in leukemia HL-60 cells and to act as cytotoxic agent on these cells was performed. Exposure of HL-60 cells to ellipticine in micelles resulted in formation of ellipticine-DNA adducts and caused the cytotoxic effect on these cells. The influence of ellipticine in micelles on HL-60 cells was very similar to that of free ellipticine. The ellipticine half maximal inhibition concentration was determined as 1.3±0.3 µmol.L(-1) and 1.4±0.3 µmol.L(-1) for ellipticine and ellipticine in micelles, respectively. Likewise, the levels of ellipticine-DNA adducts generated in HL-60 cells by both forms of ellipticine were analogous. CONCLUSION: The results found in this work demonstrate similar cytotoxicity and DNA-damaging effects of ellipticine and its micellar form on leukemia HL-60 cells in vitro.


Assuntos
Antineoplásicos/farmacologia , Adutos de DNA/efeitos dos fármacos , Elipticinas/farmacologia , Fígado/efeitos dos fármacos , Micelas , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Técnicas In Vitro , Ratos
8.
Mutagenesis ; 29(3): 189-200, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598128

RESUMO

Aristolochic acid I (AAI) is the major toxic component of the plant extract AA, which leads to the development of nephropathy and urothelial cancer in human. Individual susceptibility to AAI-induced disease might reflect variability in enzymes that metabolise AAI. In vitro NAD(P)H: quinone oxidoreductase (NQO1) is the most potent enzyme that activates AAI by catalyzing formation of AAI-DNA adducts, which are found in kidneys of patients exposed to AAI. Inhibition of renal NQO1 activity by dicoumarol has been shown in mice. Here, we studied the influence of dicoumarol on metabolic activation of AAI in Wistar rats in vivo. In contrast to previous in vitro findings, dicoumarol did not inhibit AAI-DNA adduct formation in rats. Compared with rats treated with AAI alone, 11- and 5.4-fold higher AAI-DNA adduct levels were detected in liver and kidney, respectively, of rats pretreated with dicoumarol prior to exposure to AAI. Cytosols and microsomes isolated from liver and kidney of these rats were analysed for activity and protein levels of enzymes known to be involved in AAI metabolism. The combination of dicoumarol with AAI induced NQO1 protein level and activity in both organs. This was paralleled by an increase in AAI-DNA adduct levels found in ex vivo incubations with cytosols from rats pretreated with dicoumarol compared to cytosols from untreated rats. Microsomal ex vivo incubations showed a lower AAI detoxication to its oxidative metabolite, 8-hydroxyaristolochic acid (AAIa), although cytochrome P450 (CYP) 1A was practically unchanged. Because of these unexpected results, we examined CYP2C activity in microsomes and found that treatment of rats with dicoumarol alone and in combination with AAI inhibited CYP2C6/11 in liver. Therefore, these results indicate that CYP2C enzymes might contribute to AAI detoxication.


Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinógenos/toxicidade , Dicumarol/farmacologia , Ativação Metabólica/efeitos dos fármacos , Animais , Ácidos Aristolóquicos/farmacocinética , Carcinógenos/farmacocinética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2 , Citocromos/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Testes de Mutagenicidade , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos , Ratos Wistar
9.
Xenobiotica ; 44(2): 135-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24152141

RESUMO

1. Aristolochic acid I (AAI) is the predominant component in plant extract of Aristolochia genus that is involved in development of aristolochic acid nephropathy, Balkan endemic nephropathy and urothelial cancer. The diseases do not develop in all individuals exposed to AAI and patients exhibit different clinical outcomes. Differences in the activities of enzymes catalyzing the metabolism of AAI might be one of the reasons for this individual susceptibility. 2. Understanding which human enzymes are involved in reductive activation of AAI generating AAI-DNA adducts, and/or its detoxication to the O-demethylated metabolite, aristolochic acid Ia (AAIa), is necessary in the assessment of the susceptibility to this compound. 3. This review summarizes the results of the latest studies utilizing genetically engineered mouse models to identify which human and rodent enzymes catalyze the reductive activation of AAI to AAI-DNA adducts and its oxidative detoxication to AAIa in vivo. 4. The use of hepatic cytochrome P450 (Cyp) reductase null (HRN) mice, in which NADPH:Cyp oxidoreductase (Por) is deleted in hepatocytes, Cyp1a1((-/-)), Cyp1a2((-/-)) single-knockout, Cyp1a1/1a2((-/-)) double-knockout and CYP1A-humanized mice revealed that mouse and human CYP1A1 and 1A2, besides mouse NAD(P)H: quinone oxidoreductase, were involved in the activation of AAI but CYP1A1 and 1A2 also oxidatively detoxified AAI.


Assuntos
Ácidos Aristolóquicos/farmacocinética , Carcinógenos/farmacocinética , Enzimas/metabolismo , Inativação Metabólica , Camundongos Knockout , Animais , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/toxicidade , Carcinógenos/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Adutos de DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Enzimas/genética , Humanos , Nefropatias/induzido quimicamente , Camundongos , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo
10.
Neuro Endocrinol Lett ; 35 Suppl 2: 123-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25638376

RESUMO

OBJECTIVES: Dicoumarol is known to act as an inhibitor of NAD(P)H: quinone oxidoreductase (NQO1). This cytosolic reductase significantly contributes to the genotoxicity of the nephrotoxic and carcinogenic alkaloid aristolochic acid I (AAI). Aristolochic acid causes aristolochic acid nephropathy (AAN), and Balkan endemic nephropathy (BEN), as well as associated urothelial malignancies. NQO1 is the most efficient enzyme responsible for the reductive bioactivation of AAI to species forming covalent AAI-DNA adducts. However, it is still not known how dicoumarol influences the NQO1-mediated reductive bioactivation of AAI. METHODS: AAI-DNA adduct formation was determined by 32P-postlabeling. Expression of NQO1 mRNA and NQO1 protein was determined by real-time polymerase chain reaction and Western blotting, respectively. RESULTS: In this study, dicoumarol inhibited AAI bioactivation to form AAI-DNA adducts mediated by rat and human NQO1 in vitro as expected. We however, demonstrated that dicoumarol acts as an inducer of NQO1 in kidney and lung of rats treated with this NQO1 inhibitor in vivo, both at protein and activity levels. This NQO1 induction increased the potency of kidney cytosol to bioactivate AAI and elevated AAI-DNA adduct levels were found in ex-vivo incubations of AAI with renal cytosols and DNA. NQO1 mRNA levels were induced in liver only by dicoumarol. CONCLUSION: Our results indicate a dual role of dicoumarol in NQO1-mediated genotoxicty of AAI. It acts both as an NQO1 inhibitor mainly in vitro and as an NQO1 inducer if administered to rats.


Assuntos
Ácidos Aristolóquicos/metabolismo , Dicumarol/farmacologia , Inibidores Enzimáticos/farmacologia , Quinona Redutases/metabolismo , Animais , Humanos , Ratos
11.
Neuro Endocrinol Lett ; 35 Suppl 2: 158-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25638381

RESUMO

OBJECTIVES: Flavanol dihydromyricetin (DHM) has been shown to counteract acute ethanol (EtOH) intoxication and reduce excessive EtOH consumption. Since this flavonoid is being considered for human use, the in vivo study of DHM interactions with the cytochrome P450 (CYP) multienzyme system in the respect of metabolic activation of a model food-born carcinogen, benzo[a]pyrene (BaP), is of high importance. Flavonoids of known properties, alpha-naphthoflavone (ANF) and beta-naphthoflavone (BNF) were included into the study to compare their and DHM effects on BaP-DNA adduct formation. METH0 DS: The flavonoids were administered by oral gavage either 72 hrs prior or simultaneously with a single dose of BaP to experimental rats. The expression of CYP1A1/2 enzymes was examined based on the enzymatic activity with a marker substrate, 7-ethoxyresorufin, and on Western blots. The nuclease P1 version of the 32P-postlabeling assay was used to detect and quantify covalent DNA adducts formed by BaP. RESULTS: Treatment of rats with a single dose of DHM or ANF prior to or simultaneously with BaP did not produce an increase in levels of CYP1A1 and in formation of BaP-DNA adducts in liver. BNF, a known inducer of CYP1A1, showed a synergistic effect on BaP-mediated CYP1A1 induction and BaP activation in liver. Contrary to that, in small intestine the stimulatory effect of BNF on both parameters was not detected. Animal pre-treatment with DHM or ANF before BaP administration resulted in a significant elevation of BaP-DNA adducts, namely in the distal part of small intestine, while the CYP1A1 mediated 7-ethoxyresorufin-O-deethylation (EROD) was decreased markedly. It is important to note that under all regimens of animal treatment, DHM or ANF produced the higher inhibitory effect on the BaP-DNA adduct formation and BaP-induced EROD activity of CYP1A1 when administered simultaneously than sequentially with BaP. Our data show that DHM or ANF did not enhance the BaP-activation leading to BaP-mediated genotoxicity (the formation of BaP-DNA adducts) in rat liver, however, in small intestine the pretreatment of rats with these flavonoids may enhance BaP genotoxicity. CONCLUSIONS: The data indicate that the intake of DHM prior to or simultaneously with the administration of BaP may increase the risk of a BaP-induced tumorigenesis in small intestine.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/toxicidade , Flavonóis/farmacologia , Animais , Benzo(a)pireno/administração & dosagem , Carcinógenos/administração & dosagem , Adutos de DNA/administração & dosagem , Flavonóis/administração & dosagem , Masculino , Ratos , Ratos Wistar
12.
Sensors (Basel) ; 14(12): 22982-97, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25479328

RESUMO

The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated) form to generate covalent adducts analogous to those formed by free ellipticine. The (32)P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PAGE-PEO) block copolymer, P 119 nanoparticles) to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.


Assuntos
Adutos de DNA/química , Adutos de DNA/metabolismo , Elipticinas/administração & dosagem , Elipticinas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Composição de Medicamentos/métodos , Elipticinas/farmacocinética , Masculino , Taxa de Depuração Metabólica , Micelas , Especificidade de Órgãos , Ratos , Ratos Wistar , Distribuição Tecidual
13.
Int J Mol Sci ; 15(6): 10271-95, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24918288

RESUMO

This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H: quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.


Assuntos
Ácidos Aristolóquicos/metabolismo , Benzo(a)Antracenos/metabolismo , Enzimas/metabolismo , Modelos Moleculares , Acetiltransferases/metabolismo , Animais , Ácidos Aristolóquicos/química , Hidrocarboneto de Aril Hidroxilases/metabolismo , Benzo(a)Antracenos/química , Biocatálise , Adutos de DNA/química , Adutos de DNA/metabolismo , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Sulfotransferases/metabolismo
14.
Int J Mol Sci ; 16(1): 284-306, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25547492

RESUMO

Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.


Assuntos
Antineoplásicos/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Elipticinas/farmacologia , Hepatócitos/efeitos dos fármacos , Desacopladores/farmacologia , Animais , Citocromo P-450 CYP1A1/deficiência , Citocromo P-450 CYP1A1/genética , Hepatócitos/metabolismo , Camundongos , Ratos
15.
Chem Res Toxicol ; 26(2): 290-9, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23289503

RESUMO

Sudan I (1-phenylazo-2-hydroxynaphthol) is a suspected human carcinogen causing tumors in the livers and urinary bladders of rats, mice, and rabbits. Here, we investigated for the first time the influence of Sudan I exposure on the expression of several biotransformation enzymes in the livers, kidneys, and lungs of rats concomitantly at the mRNA and protein levels and assayed their enzymatic activities. We also studied its effect on the formation of Sudan I-derived DNA adducts in vitro. Sudan I increased the total amounts of cytochrome P450 (P450) in all organs tested. Western blots using antibodies raised against various P450s, NADPH:P450 reductase, and NAD(P)H:quinone oxidoreductase 1 (NQO1) showed that the expression of P450 1A1 and NQO1 was induced in the liver, kidney, and lung of rats treated with Sudan I. The higher protein levels correlated with increased enzyme activities of P450 1A1/2 and NQO1. Furthermore, 9.9-, 5.9-, and 2.8-fold increases in the formation of Sudan I oxidative metabolites catalyzed by microsomes isolated from the liver, kidney, and lung, respectively, of rats treated with Sudan I were found. The relative amounts of P450 1A and NQO1 mRNA, measured by real-time polymerase chain reaction (RT-PCR) analysis, demonstrated that Sudan I induced the expression of P450 1A1 and NQO1 mRNA in the liver, kidney, and lung, and of P450 1A2 mRNA in kidney and lung. Finally, microsomes isolated from livers, kidneys, and lungs of Sudan I exposed rats more effectively catalyzed the formation of Sudan I-DNA adducts than microsomes from organs of control rats. This was attributable to the higher P450 1A1 expression. Because P450 1A1 is playing a major role in the bioactivation of Sudan I in rat and human systems, its induction by Sudan I may have a profound effect on cancer risk by this azo dye. In addition, the induction of P450 1A1/2 and NQO1 enzymes can influence individual human susceptibility to other environmental carcinogens and have an effect on cancer risk.


Assuntos
Carcinógenos/metabolismo , Corantes/metabolismo , Citocromo P-450 CYP1A1/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftóis/metabolismo , Animais , Citocromo P-450 CYP1A1/genética , Citosol/efeitos dos fármacos , Citosol/enzimologia , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , NAD(P)H Desidrogenase (Quinona)/genética , RNA Mensageiro/genética , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos
16.
Neuro Endocrinol Lett ; 34 Suppl 2: 43-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24362092

RESUMO

OBJECTIVES: The aim of this study was to investigate a role of cytochrome P450 (CYP) and peroxidase in ellipticine oxidative activation in two mouse strains differing in expression of NADPH:CYP reductase (POR) [the HRN (Hepatic Cytochrome P450 Reductase Null) mice, in which POR is deleted in hepatocytes and its wild-type (WT) counterpart], and in levels of CYP1A1/2 and cytochrome b5 that were modulated by treatment of these mouse models with a CYP1A inducer, benzo[a]pyrene (BaP). METHODS: Ellipticine-DNA adducts were detected by 32P-postlabeling. HPLC was employed for the separation and characterization of ellipticine metabolites. RESULTS: Hepatic microsomes of HRN and WT mice activate ellipticine to form ellipticine-derived DNA adducts. A 2.2- and 10.4-fold increase in amounts of ellipticine-derived DNA adducts formed by liver microsomes was caused by exposure of HRN and WT mice to BaP, respectively. The results found and utilization of NADPH and arachidonic acid, cofactors of CYP- and cyclooxygenase (COX)-dependent enzyme systems, respectively, as well as inhibitors of CYP1A1/2 and 3A, demonstrate that the CYP1A and 3A enzymes play a major role in ellipticine activation in liver microsomes. In addition, the COX enzyme is important in ellipticine activation in liver of HRN mice. CONCLUSION: The CYP1A and 3A enzymes activate ellipticine mainly in liver of WT mice, whereas peroxidase COX plays this role in liver of HRN mice. Treatment of mice with BaP increases an impact of CYP1A on ellipticine activation. A pattern of expression levels of these enzymes plays a crucial role in their impact on this process.


Assuntos
Antineoplásicos/farmacocinética , Benzo(a)pireno/farmacologia , Elipticinas/farmacocinética , Animais , Biotransformação/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
17.
Neuro Endocrinol Lett ; 34 Suppl 2: 55-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24362093

RESUMO

OBJECTIVES: Cytochrome P450 (CYP) 1A1 is the most important enzyme in both activation and detoxification of carcinogenic benzo[a]pyrene (BaP), in combination with microsomal epoxide hydrolase (mEH). To evaluate metabolism of BaP in human, identification of a suitable animal model that mimics the metabolic fate of BaP in human is of great importance. The aim of this work was to compare BaP oxidation by human CYP1A1 and CYP1A1 of one animal model, rat. Investigation of the effect of cytochrome b5 on BaP oxidation by CYP1A1 was another target of this study. METHODS: High performance liquid chromatography (HPLC) was employed for separation of BaP metabolites formed by enzymatic systems. Their structures were identified by mass- and NMR-spectrometry. RESULTS: Human hepatic microsomes oxidized BaP to BaP-9,10-dihydrodiol, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione and BaP-3-ol. The same metabolites were generated by rat liver microsomes, but BaP-9-ol and a metabolite Mx, the structure of which has not been identified as yet, were also formed in these microsomes. Human CYP1A1 expressed with NADPH:CYP reductase (POR) in Supersomes™ oxidized BaP to the same metabolites as microsomes, but BaP-4,5-dihydrodiol has not been detected. Rat recombinant CYP1A1 in this SupersomesTM system oxidized BaP to BaP-9,10-dihydrodiol, a metabolite Mx, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol and BaP-3-ol. Addition of cytochrome b5 to rat and human recombinant CYP1A1 systems led to a more than 2-fold increase in BaP oxidation. CONCLUSION: The results show similarities between human and rat CYP1A1 in BaP oxidation and demonstrate rats as a suitable model mimicking BaP oxidation in human.


Assuntos
Benzo(a)pireno/metabolismo , Carcinógenos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromos b5/farmacologia , Animais , Humanos , Inativação Metabólica , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos
18.
Toxicol Appl Pharmacol ; 265(3): 360-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22982977

RESUMO

Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)-the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1⁻/⁻, Cyp1a2⁻/⁻ and Cyp1a1/1a2⁻/⁻ knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential.


Assuntos
Ácidos Aristolóquicos/farmacocinética , Nefropatia dos Bálcãs/enzimologia , Nefropatia dos Bálcãs/genética , Citocromo P-450 CYP1A1/deficiência , Citocromo P-450 CYP1A2/deficiência , Fígado/metabolismo , NAD(P)H Desidrogenase (Quinona)/biossíntese , Animais , Ácidos Aristolóquicos/toxicidade , Nefropatia dos Bálcãs/metabolismo , Western Blotting , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Adutos de DNA/metabolismo , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/metabolismo
19.
Chem Res Toxicol ; 25(5): 1075-85, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22390216

RESUMO

The antineoplastic alkaloid ellipticine is a prodrug, whose pharmacological efficiency is dependent on its cytochrome P450 (P450)- and/or peroxidase-mediated activation in target tissues. The P450 3A4 enzyme oxidizes ellipticine to five metabolites, mainly to 13-hydroxy- and 12-hydroxyellipticine, the metabolites responsible for the formation of ellipticine-13-ylium and ellipticine-12-ylium ions that generate covalent DNA adducts. Cytochrome b(5) alters the ratio of ellipticine metabolites formed by P450 3A4. While the amounts of the detoxication metabolites (7-hydroxy- and 9-hydroxyellipticine) were not changed with added cytochrome b(5), 12-hydroxy- and 13-hydroxyellipticine, and ellipticine N(2)-oxide increased considerably. The P450 3A4-mediated oxidation of ellipticine was significantly changed only by holo-cytochrome b(5), while apo-cytochrome b(5) without heme or Mn-cytochrome b(5) had no such effect. The change in amounts of metabolites resulted in an increased formation of covalent ellipticine-DNA adducts, one of the DNA-damaging mechanisms of ellipticine antitumor action. The amounts of 13-hydroxy- and 12-hydroxyellipticine formed by P450 3A4 were similar, but more than 7-fold higher levels of the adduct were formed by 13-hydroxyellipticine than by 12-hydroxyellipticine. The higher susceptibility of 13-hydroxyellipticine toward heterolytic dissociation to ellipticine-13-ylium in comparison to dissociation of 12-hydroxyellipticine to ellipticine-12-ylium, determined by quantum chemical calculations, explains this phenomenon. The amounts of the 13-hydroxyellipticine-derived DNA adduct significantly increased upon reaction of 13-hydroxyellipticine with either 3'-phosphoadenosine-5'-phosphosulfate or acetyl-CoA catalyzed by human sulfotransferases 1A1, 1A2, 1A3, and 2A1, or N,O-acetyltransferases 1 and 2. The calculated reaction free energies of heterolysis of the sulfate and acetate esters are by 10-17 kcal/mol more favorable than the energy of hydrolysis of 13-hydroxyellipticine, which could explain the experimental data.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/metabolismo , Elipticinas/metabolismo , Pró-Fármacos/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Arilamina N-Acetiltransferase/metabolismo , DNA/metabolismo , Elipticinas/farmacologia , Humanos , Pró-Fármacos/farmacologia , Coelhos , Sulfotransferases/metabolismo
20.
Ann Bot ; 110(7): 1479-88, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22718086

RESUMO

BACKGROUND AND AIMS: Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were studied within and into a population of the alpine monocarpic perennial Campanula thyrsoides. METHODS: A paternity analysis was performed on sampled seed families using microsatellites, genotyping 22 flowering adults and 331 germinated offspring to estimate gene flow, and pollen analogues were used to estimate pollen dispersal. The focal population was situated among 23 genetically differentiated populations on a subalpine mountain plateau (<10 km(2)) in central Switzerland. KEY RESULTS: Paternity analysis assigned 110 offspring (33·2 %) to a specific pollen donor (i.e. 'father') in the focal population. Mean pollination distance was 17·4 m for these offspring, and the pollen dispersal curve based on positive LOD scores of all 331 offspring was strongly decreasing with distance. The paternal contribution from 20-35 offspring (6·0-10·5 %) originated outside the population, probably from nearby populations on the plateau. Multiple potential fathers were assigned to each of 186 offspring (56·2 %). The pollination distance to 'mother' plants was negatively affected by the mothers' degree of spatial isolation in the population. Variability in male mating success was not related to the degree of isolation of father plants. CONCLUSIONS: Pollen dispersal patterns within the C. thyrsoides population are affected by spatial positioning of flowering individuals and pollen dispersal may therefore contribute to the course of evolution of populations of this species. Pollen dispersal into the population was high but apparently not strong enough to prevent the previously described substantial among-population differentiation on the plateau, which may be due to the monocarpic perenniality of this species.


Assuntos
Campanulaceae/fisiologia , Fluxo Gênico , Genética Populacional , Pólen/fisiologia , Campanulaceae/genética , DNA de Plantas/genética , Demografia , Flores/genética , Flores/fisiologia , Estruturas Genéticas , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Pólen/genética , Polinização , Reprodução , Sementes/genética , Sementes/fisiologia , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA