RESUMO
This Letter describes strong coupling of densely packed molecular emitters in metal-organic frameworks (MOFs) and plasmonic nanoparticle (NP) lattices. Porphyrin-derived ligands with small transition dipole moments in an ordered MOF film were grown on Ag NP arrays. Angle-resolved optical measurements of the MOF-NP lattice system showed the formation of a polariton that is lower in energy and does not cross the uncoupled MOF Q1 band. Modeling predicted the upper polariton energy and a calculated Rabi splitting of 110 meV. The coupling strength was systematically controlled by detuning the plasmon energy by changing the refractive index of the solvents infiltrating the MOF pores. Through transient absorption spectroscopy, we found that the lower polariton decays quickly at shorter time scales (<500 ps) and slowly at longer times because of energy transfer from the upper polariton. This hybrid system demonstrates how MOFs can function as an accessible excitonic material for polariton chemistry.
RESUMO
Cylindrical vector (CV) beams exhibit spatially varying polarization important in optical communication, super-resolution microscopy, and high-throughput information processing. Compared to radially or azimuthally polarized CV beams that are cylindrically symmetric, hybrid-electric (HE) beams offer increased optical tunability because of their polygonally symmetric polarizations. However, efforts to generate and isolate HE beams have relied on bulky optical assemblies or devices with complex and stringent fabrication requirements. Here, we report a moiré-based metasurface approach to engineer HE polarization states with high degrees of rotational symmetry. Importantly, polarization symmetries can be tailored based only on the reciprocal lattice of the metasurface and not the real-space patterns. Our modular method outlines important design principles for shaping light at the nanoscale.
RESUMO
This paper reports how CdSe core-only nanoplatelets (NPLs) coupled with plasmonic Al nanoparticle lattices can exhibit exciton-polariton lasing. By improving a procedure to synthesize monodisperse 4-monolayer CdSe NPLs, we could resolve polariton decay dynamics and pathways. Experiment and theory confirmed that the system is in the strong coupling regime based on anticrossings in the dispersion diagrams and magnitude of the Rabi-splitting values. Notably, polariton lasing is observed only for cavity lattice periodicities that exhibit specific dispersive characteristics that enable polariton accumulation. The threshold of polariton lasing is 25-fold lower than the reported photon lasing values from CdSe NPLs in similar cavity designs. This open-cavity platform offers a simple approach to control exciton polaritons anticipated to benefit quantum information processing, optoelectronics, and chemical reactions.
RESUMO
This paper describes a nanofabrication procedure that can generate multiscale substrates with quasi-random microregions of nanoparticle arrays having different periodicities and metals. We combine cycles of large-area nanoparticle array fabrication with solvent-assisted wrinkle lithography to mask and etch quasi-random areas of prefabricated nanoparticles to control the fill factors of the arrays. The approach is highly flexible, and parameters, including nanoparticle size and material, array geometry, and fill factor, can be tailored independently. Multimetallic nanoparticle arrays can support surface lattice resonances at fill factors as low as 20% and can function as nanoscale cavities for lasing action with as few as 10% of the nanoparticles in an array. We demonstrated that multimetallic nanoparticle substrates that combine two or three arrays with different periodicities can exhibit lasing responses over visible and near-infrared wavelengths. Our work showcases the robust optical responses of multimetallic and periodic devices for broadband light manipulation.
RESUMO
The impact of plasmonic surface lattice resonances on the magneto-optical properties and energy absorption efficiency has been studied in arrays of [Co/Gd/Pt]N multilayer nanodisks. Varying the light wavelength, the disk diameter, and the period of the array, it is demonstrated that surface lattice resonances allow all-optical single pulse switching of [Co/Gd/Pt]N nanodisk arrays with an energy 400% smaller than the energy needed to switch a continuous [Co/Gd/Pt]N film. Moreover, the magneto-optical Faraday effect is enhanced at the resonance condition by up to 5,000%. The influence of the disk diameter and array period on the amplitude, width and position of the surface lattice resonances is in qualitative agreement with theoretical calculations and opens the way to designing magnetic metasurfaces for all-optical magnetization switching applications.
RESUMO
Band edges at the high symmetry points in reciprocal space of periodic structures hold special interest in materials engineering for their high density of states. In optical metamaterials, standing waves found at these points have facilitated lasing, bound-states-in-the-continuum, and Bose-Einstein condensation. However, because high symmetry points by definition are localized, properties associated with them are limited to specific energies and wavevectors. Conversely, quasi-propagating modes along the high symmetry directions are predicted to enable similar phenomena over a continuum of energies and wavevectors. Here, quasi-propagating modes in 2D nanoparticle lattices are shown to support lasing action over a continuous range of wavelengths and symmetry-determined directions from a single device. Using lead halide perovskite nanocrystal films as gain materials, lasing is achieved from waveguide-surface lattice resonance (W-SLR) modes that can be decomposed into propagating waves along high symmetry directions, and standing waves in the orthogonal direction that provide optical feedback. The characteristics of the lasing beams are analyzed using an analytical 3D model that describes diffracted light in 2D lattices. Demonstrations of lasing across different wavelengths and lattice designs highlight how quasi-propagating modes offer possibilities to engineer chromatic multibeam emission important in hyperspectral 3D sensing, high-bandwidth Li-Fi communication, and laser projection displays.
RESUMO
Organic light-emitting diodes (OLEDs) have been established as versatile light sources that allow for easy integration in large-area surfaces and flexible substrates. In addition, the low fabrication cost of OLEDs renders them particularly attractive as general lighting sources. Current methods for the fabrication of white-light OLEDs rely on the combination of multiple organic emitters and/or the incorporation of multiple cavity modes in a thick active medium. These architectures introduce formidable challenges in both device design and performance improvements, namely, the decrease of efficiency with increasing brightness (efficiency roll-off) and short operational lifetime. Here we demonstrate, for the first time, white-light generation in an OLED consisting of a sub-100 nm thick blue single-emissive layer coupled to the photonic Bragg modes of a dielectric distributed Bragg reflector (DBR). We show that the Bragg modes, although primarily located inside the DBR stack, can significantly overlap with the emissive layer, thus efficiently enhancing emission and outcoupling of photons at selected wavelengths across the entire visible light spectrum. Moreover, we show that color temperature can be tuned by the DBR parameters, offering great versatility in the optimization of white-light emission spectra.
RESUMO
We report on lasing at visible wavelengths in arrays of ferromagnetic Ni nanodisks overlaid with an organic gain medium. We demonstrate that by placing an organic gain material within the mode volume of the plasmonic nanoparticles both the radiative and, in particular, the high ohmic losses of Ni nanodisk resonances can be compensated. Under increasing pump fluence, the systems exhibit a transition from lattice-modified spontaneous emission to lasing, the latter being characterized by highly directional and sub-nanometer line width emission. By breaking the symmetry of the array, we observe tunable multimode lasing at two wavelengths corresponding to the particle periodicity along the two principal directions of the lattice. Our results are relevant for loss-compensated magnetoplasmonic devices and topological photonics.