Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 22(39): 13810-13814, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27380617

RESUMO

Over the past five years a number of different synthesis approaches has been reported to obtain so-called 'black' titania. One of the outstanding features of the material is that certain synthesis processes lead to the formation of an intrinsic co-catalytic center and thus enable noble-metal free photocatalytic H2 -generation. In the present work, using TiO2 nanotube layers, we compare three common 'blackening' approaches, namely i) the original high-pressure hydrogenation (HPT-H2 ), ii) a classic high temperature reduction in Ar, and iii) an electrochemical (cathodic) reduction. We demonstrate that except for high pressure hydrogenation also cathodic reduction leads to an activation of TiO2 - that is, it exhibits noble-metal-free photocatalytic H2 generation. Moreover, we show that a combination of cathodic reduction/high pressure hydrogenation leads to a synergistic effect, that is, a significant enhancement of the combined co-catalytic activity.

2.
Nano Lett ; 14(6): 3309-13, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24797919

RESUMO

Here we report that TiO2 nanotube (NT) arrays, converted by a high pressure H2 treatment to anatase-like "black titania", show a high open-circuit photocatalytic hydrogen production rate without the presence of a cocatalyst. Tubes converted to black titania using classic reduction treatments (e.g., atmospheric pressure H2/Ar annealing) do not show this effect. The main difference caused by the high H2 pressure annealing is the resulting room-temperature stable, isolated Ti(3+) defect-structure created in the anatase nanotubes, as evident from electron spin resonance (ESR) investigations. This feature, absent for conventional reduction, seems thus to be responsible for activating intrinsic, cocatalytic centers that enable the observed high open-circuit hydrogen generation.

3.
Angew Chem Int Ed Engl ; 53(51): 14201-5, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25327934

RESUMO

The high-pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H2 evolution that is highly effective and stable without the need for any additional co-catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble-metal-decorated TiO2). EPR and PL measurements indicated the intrinsic co-catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation. These active centers can be observed specifically for high-pressure hydrogenation; other common reduction treatments do not result in this effect.

4.
ChemSusChem ; 10(1): 62-67, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27933749

RESUMO

'Black' TiO2 -in the widest sense, TiO2 reduced by various treatments-has attracted tremendous scientific interest in recent years because of some outstanding properties; most remarkably in photocatalysis. While the material effects visible light absorption (the blacker, the better), black titania produced by high pressure hydrogenation was recently reported to show another highly interesting feature; noble-metal-free photocatalytic H2 generation. In a systematic investigation of high-temperature hydrogen treatments of anatase nanoparticles, TEM, XRD, EPR, XPS, and photoelectrochemistry are used to characterize different degrees of surface hydrogenation, surface termination, electrical conductivity, and structural defects in the differently treated materials. The materials' intrinsic activity for photocatalytic hydrogen evolution is coupled neither with their visible light absorption behavior nor the formation of amorphous material, but rather must be ascribed to optimized and specific defect formation (gray is better than black). This finding is further confirmed by using a mesoporous anatase matrix as a hydrogenation precursor, which, after conversion to the gray state, even further enhances the overall photocatalytic hydrogen evolution activity.


Assuntos
Hidrogênio/química , Processos Fotoquímicos , Titânio/química , Catálise , Hidrogenação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA