Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(1): e16236, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36468184

RESUMO

C-reactive protein (CRP) is an early-stage acute phase protein and highly upregulated in response to inflammatory reactions. We recently identified a novel mechanism that leads to a conformational change from the native, functionally relatively inert, pentameric CRP (pCRP) structure to a pentameric CRP intermediate (pCRP*) and ultimately to the monomeric CRP (mCRP) form, both exhibiting highly pro-inflammatory effects. This transition in the inflammatory profile of CRP is mediated by binding of pCRP to activated/damaged cell membranes via exposed phosphocholine lipid head groups. We designed a tool compound as a low molecular weight CRP inhibitor using the structure of phosphocholine as a template. X-ray crystallography revealed specific binding to the phosphocholine binding pockets of pCRP. We provide in vitro and in vivo proof-of-concept data demonstrating that the low molecular weight tool compound inhibits CRP-driven exacerbation of local inflammatory responses, while potentially preserving pathogen-defense functions of CRP. The inhibition of the conformational change generating pro-inflammatory CRP isoforms via phosphocholine-mimicking compounds represents a promising, potentially broadly applicable anti-inflammatory therapy.


Assuntos
Proteína C-Reativa , Fosforilcolina , Humanos , Fosforilcolina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Membrana Celular/metabolismo , Anti-Inflamatórios
2.
Facial Plast Surg Aesthet Med ; 24(2): 117-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34166082

RESUMO

Background: Since facial paralysis is a dynamic condition, the analysis of still photographs is not sufficient for measurement of facial reanimation outcomes. This study aimed at evaluating an artificial intelligence (AI)-driven software as a novel video assessment tool for smile reanimation surgery and at comparing it with the Terzis score. Methods: Patients with facial paralysis undergoing smile reanimation surgery between January 2008 and April 2020 were eligible for this retrospective study. Inclusion criteria were at least 6 months of follow-up and availability of both pre- and post-operative video documentation. The software output was given as intensity score (IS) values between 0 and 1, representing emotions/action units (AUs) that are absent or fully present, respectively. Results: During the study period, 240 patients underwent facial reanimation surgery, of whom 63 patients met the inclusion criteria. Postoperatively, the median IS of the happiness emotion and lip corner puller AU increased significantly (p < 0.001). There was a positive correlation of Terzis score with the IS of happiness emotion (r = 0.8) and lip corner puller AU (r = 0.74). Conclusions: The novel AI-driven video analysis is strongly correlated with the Terzis score and shows promise for objective functional outcome evaluation after smile reanimation surgery.


Assuntos
Paralisia Facial , Inteligência Artificial , Paralisia Facial/cirurgia , Humanos , Avaliação de Resultados em Cuidados de Saúde , Estudos Retrospectivos , Sorriso
3.
Front Immunol ; 12: 721887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447388

RESUMO

Phagocytosis and the formation of reactive oxygen species (ROS) in phagocytic leukocytes are an effective killing mechanism of the innate host defense. These cellular processes of innate immunity function in a complex interplay with humoral factors. C-reactive protein (CRP) in its activated, monomeric isoform (mCRP) has been shown to activate immune cells via the classical complement pathway. We investigated the complement-dependent effects of monomeric CRP (mCRP) on neutrophils and monocyte subtypes using complement-specific inhibitors by both flow cytometry and confocal fluorescence microscopy. We demonstrate that CRP-induced ROS generation is a conformation-specific and complement-dependent process in leukocyte subsets with classical monocytes as the primary source of ROS amongst human monocyte subsets. Elucidation of this complex interplay of CRP and complement in inflammation pathophysiology might help to improve anti-inflammatory therapeutic strategies.


Assuntos
Proteína C-Reativa/metabolismo , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Citotoxicidade Imunológica , Imunidade Inata , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo
4.
Front Immunol ; 12: 641224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981302

RESUMO

Monocytes are the third most frequent type of leukocytes in humans, linking innate and adaptive immunity and are critical drivers in many inflammatory diseases. Based on the differential expression of surface antigens, three monocytic subpopulations have been suggested in humans and two in rats with varying inflammatory and phenotype characteristics. Potential intervention strategies that aim to manipulate these cells require an in-depth understanding of monocyte behavior under different conditions. However, monocytes are highly sensitive to their specific activation state and expression of surface markers, which can change during cell isolation and purification. Thus, there is an urgent need for an unbiased functional analysis of activation in monocyte subtypes, which is not affected by the isolation procedure. Here, we present a flow cytometry-based protocol for evaluating subset-specific activation and cytokine expression of circulating blood monocytes both in humans and rats using small whole blood samples (50 - 100 µL). In contrast to previously described monocyte isolation and flow cytometry visualization methods, the presented approach virtually leaves monocyte subsets in a resting state or fixes them in their current state and allows for an unbiased functional endpoint analysis without prior cell isolation. This protocol is a comprehensive tool for studying differential monocyte regulation in the inflammatory and allogeneic immune response in vitro and vivo.


Assuntos
Citocinas/imunologia , Citometria de Fluxo , Monócitos/imunologia , Adulto , Animais , Citocinas/sangue , Feminino , Humanos , Masculino , Monócitos/citologia , Monócitos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA