Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(41): 25414-25422, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989161

RESUMO

Documenting the first appearance of modern humans in a given region is key to understanding the dispersal process and the replacement or assimilation of indigenous human populations such as the Neanderthals. The Iberian Peninsula was the last refuge of Neanderthal populations as modern humans advanced across Eurasia. Here we present evidence of an early Aurignacian occupation at Lapa do Picareiro in central Portugal. Diagnostic artifacts were found in a sealed stratigraphic layer dated 41.1 to 38.1 ka cal BP, documenting a modern human presence on the western margin of Iberia ∼5,000 years earlier than previously known. The data indicate a rapid modern human dispersal across southern Europe, reaching the westernmost edge where Neanderthals were thought to persist. The results support the notion of a mosaic process of modern human dispersal and replacement of indigenous Neanderthal populations.


Assuntos
Arqueologia , Demografia , Fósseis , Emigração e Imigração/história , História Antiga , Humanos , Portugal , Datação Radiométrica
2.
J Hum Evol ; 133: 61-77, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358184

RESUMO

The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.


Assuntos
Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Densidade Óssea , Diáfises/anatomia & histologia , Diáfises/fisiologia , Fêmur/fisiologia , Colo do Fêmur/anatomia & histologia , Colo do Fêmur/fisiologia , Hominidae/fisiologia , África do Sul
3.
J Hum Evol ; 97: 109-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27457549

RESUMO

Long-term trends in robusticity of lower limb bones in the genus Homo through the Pleistocene until the present have been proposed, which have been interpreted as a consequence of decreasing levels of mobility and activity patterns, changes in lifestyle, and environmental factors. There has also long been evidence that skeletal strength increases over an individual's lifespan. This increase is caused by continuous bone remodeling that optimizes the structure of a bone to resist mechanical loadings and creates a balance between endosteal resorption and subperiosteal apposition. However, none of the previous studies of temporal trends in robusticity has considered both processes and analyzed how individual age-related robusticity might influence higher-level temporal trends. This paper therefore explores temporal trends in robusticity of lower limb long bones within the genus Homo and considers how individual ages-at-death can confound published evolutionary trends, given the fact that some aspects of relative bone strength tend to increase over individual lifespans. Cross-sectional diaphyseal properties of the midshaft and proximal femur and midshaft tibia of Pleistocene and early Holocene individuals, together with data on age-at-death are used to analyze changes in relative bone strength relative to individuals' ages and evolutionary time. The results show increasing bone strength in adulthood until the fourth decade and then a slight decrease, an observation that conforms to previously published results on recent human populations. However, no significant impact of age-at-death on the trends along an evolutionary trajectory has been detected. The evolutionary trends in femoral and tibial relative strength can be described as fluctuating, probably as a consequence of changing mobility patterns, environmentally and technologically influenced behaviors, and demographic processes. The differences between evolutionary trends published in several studies are explained primarily as a result of different ways of standardizing cross-sectional parameters for size, and differences in sample composition.


Assuntos
Densidade Óssea , Fêmur/fisiologia , Hominidae/fisiologia , Tíbia/fisiologia , Adolescente , Adulto , Fatores Etários , Animais , Evolução Biológica , Fenômenos Biomecânicos , Feminino , Fêmur/anatomia & histologia , Hominidae/anatomia & histologia , Humanos , Masculino , Pessoa de Meia-Idade , Tíbia/anatomia & histologia , Adulto Jovem
4.
Am J Phys Anthropol ; 152(4): 506-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132859

RESUMO

Variation in humeral morphology among hominoids has long been recognized in relation to both phylogeny and behavior. Here, we use 3D landmark data to analyze humeral shape among hominoids, including hylobatids (n = 37), Pongo (n = 33), Homo (n = 74), Pan (n = 55), and Gorilla (n = 45) to examine the relative influence of phylogenetic history vs. locomotor adaptation on humeral shape. Principal components analysis (PCA) of Procrustes shape data derived from 19 humeral type II or type III landmarks (Bookstein, 1991) for these taxa reveals the following: PC1, which primarily reflects the humeral torsion (or lack thereof) and relative diaphyseal and epiphyseal breadths, separates the relatively narrow-shafted, small articular dimensions and low humeral torsion Hylobates, and to a lesser extent, Pongo, humeri from those of the African hominoids. PC2, which largely contrasts shafts that are posteriorly convex (high PC2 scores) with antero-posteriorly straight humeral shafts (low PC2 scores) separates Homo, who tend to have A-P straighter shafts, from the more A-P bowed humeral shafts of the apes. These shape patterns suggest that the bowed shafts of Pan, Pongo, and Gorilla (and to a lesser extent, hylobatids) are due to the fact that in each of these taxa, the humerus is a weight-bearing bone, whereas the shafts of Homo are freed from locomotion. More subtle behavioral indicators are also elucidated, whereas cluster analyses (minimum spanning tree fit to a principal coordinates [PCO] plot and UPGMA dendrogram) reveal strong phylogenetic signals in the hominoid humerus as well.


Assuntos
Antropometria/métodos , Hominidae/anatomia & histologia , Úmero/anatomia & histologia , Imageamento Tridimensional/métodos , Análise de Variância , Animais , Humanos , Análise de Componente Principal
5.
Nat Commun ; 13(1): 2458, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513387

RESUMO

Species determination based on genetic evidence is an indispensable tool in archaeology, forensics, ecology, and food authentication. Most available analytical approaches involve compromises with regard to the number of detectable species, high cost due to low throughput, or a labor-intensive manual process. Here, we introduce "Species by Proteome INvestigation" (SPIN), a shotgun proteomics workflow for analyzing archaeological bone capable of querying over 150 mammalian species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rapid peptide chromatography and data-independent acquisition (DIA) with throughput of 200 samples per day reduce expensive MS time, whereas streamlined sample preparation and automated data interpretation save labor costs. We confirm the successful classification of known reference bones, including domestic species and great apes, beyond the taxonomic resolution of the conventional peptide mass fingerprinting (PMF)-based Zooarchaeology by Mass Spectrometry (ZooMS) method. In a blinded study of degraded Iron-Age material from Scandinavia, SPIN produces reproducible results between replicates, which are consistent with morphological analysis. Finally, we demonstrate the high throughput capabilities of the method in a high-degradation context by analyzing more than two hundred Middle and Upper Palaeolithic bones from Southern European sites with late Neanderthal occupation. While this initial study is focused on modern and archaeological mammalian bone, SPIN will be open and expandable to other biological tissues and taxa.


Assuntos
Proteoma , Proteômica , Animais , Arqueologia/métodos , Cromatografia Líquida , Mamíferos , Peptídeos , Proteômica/métodos , Espectrometria de Massas em Tandem
6.
Am J Phys Anthropol ; 141(2): 325-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19919000

RESUMO

In comparing long-bone cross-sectional geometric properties between individuals, percentages of bone length are often used to identify equivalent locations along the diaphysis. In fragmentary specimens where bone lengths cannot be measured, however, these locations must be estimated more indirectly. In this study, we examine the effect of inaccurately located femoral and tibial midshafts on estimation of geometric properties. The error ranges were compared on 30 femora and tibiae from the Eneolithic and Bronze Age. Cross-sections were obtained at each 1% interval from 60 to 40% of length using CT scans. Five percent of deviation from midshaft properties was used as the maximum acceptable error. Reliability was expressed by mean percentage differences, standard deviation of percentage differences, mean percentage absolute differences, limits of agreement, and mean accuracy range (MAR) (range within which mean deviation from true midshaft values was less than 5%). On average, tibial cortical area and femoral second moments of area are the least sensitive to positioning error, with mean accuracy ranges wide enough for practical application in fragmentary specimens (MAR = 40-130 mm). In contrast, tibial second moments of area are the most sensitive to error in midshaft location (MAR = 14-20 mm). Individuals present significant variation in morphology and thus in error ranges for different properties. For highly damaged fossil femora and tibiae we recommend carrying out additional tests to better establish specific errors associated with uncertain length estimates.


Assuntos
Anatomia Transversal/métodos , Antropologia Física/métodos , Antropometria/métodos , Fêmur/anatomia & histologia , Fósseis , Tíbia/anatomia & histologia , História Antiga , Humanos , Reprodutibilidade dos Testes , Projetos de Pesquisa
7.
J Forensic Leg Med ; 68: 101866, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31518882

RESUMO

The 3D imaging technologies have become of paramount importance for example in disciplines such as forensic anthropology and bioarchaeology, where they are being used more and more frequently. There are several new possibilities that they offer; for instance, the easier and faster sharing of data among institutions, the possibility of permanent documentation, or new opportunities of data analysis. An important requirement, however, is whether the data obtained from different scanning devices are comparable and whether the possible varying outputs could affect further analyses, such as the estimation of the biological profile. Therefore, we aimed to investigate two important questions: (1) whether 3D models acquired by two different scanning technologies (structured light and laser) are comparable and (2) whether the scanning equipment has an effect on the anthropological analyses, such as age-at-death estimation and sex assessment. 3D models of ossa coxa (n = 29) were acquired by laser (NextEngine) and structured light (HP 3D Structured Light Scanner PRO 2) scanners. The resulting 3D models from both scanners were subjected to age-at-death analyses (via the quantitative method of Stoyanova et al., 2017) and sex analyses (via Diagnose Sexuelle Probabiliste 2 of Bruzek et al., 2017). Furthermore, high quality scans of a small sample (n = 5) of pubic symphyseal surfaces with the RedLux Profiler device were acquired as reference surfaces to which the outputs from both scanners were compared. Small deviations between surfaces were more evident in more rugged surfaces (in areas of depression and protrusion). Even though small differences from the reference surfaces were found, they did not have a significant effect on the age and sex estimates. It never resulted in the opposite sex assignment, and no significant differences were observed between age estimates (with the exception of those with the TPS/BE model).


Assuntos
Determinação da Idade pelo Esqueleto , Simulação por Computador , Imageamento Tridimensional , Lasers , Ossos Pélvicos/diagnóstico por imagem , Determinação do Sexo pelo Esqueleto , Feminino , Antropologia Forense , Humanos , Masculino , Variações Dependentes do Observador , Análise de Regressão
8.
Forensic Sci Int ; 271: 126.e1-126.e9, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28024921

RESUMO

Sex assessment of skeletal remains in the context of forensic investigation is one of the most important components when constructing biological profile of the deceased individual since it helps to significantly narrow down the number of potential victims. Therefore, the number of methods suitable to estimate sex should be as wide as possible, especially for cases of highly fragmented remains. This paper offers a classification method for sexing human remains based on an area around foramen magnum and tests other similar discriminatory functions published elsewhere on an independent sample from the circummediterranean region. We provide discriminant and logistic regression functions for several sets of variable combinations derived from head CT images. None of the functions performs reliably enough to be used in the forensic context. The same holds true for other discriminatory functions published in the literature. For most of the functions, the failure rate (its inability to successfully assign sex of an unknown individual) reaches 100%. Thus, despite the fact that foramen magnum is sexually dimorphic in most populations, its use in sexing cranial remains in the forensic context should be limited only to cases in which we know population affinity of unknown skeletal remains and can provide referential data from the same population to estimate sex.


Assuntos
Forame Magno/anatomia & histologia , Forame Magno/diagnóstico por imagem , Determinação do Sexo pelo Esqueleto/métodos , Análise Discriminante , Feminino , Antropologia Forense , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA