Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
EMBO J ; 42(21): e113891, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743763

RESUMO

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Assuntos
Cílios , Organelas , Cílios/metabolismo , Diferenciação Celular
2.
Proc Natl Acad Sci U S A ; 121(10): e2309518121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422023

RESUMO

The silica-based cell walls of diatoms are prime examples of genetically controlled, species-specific mineral architectures. The physical principles underlying morphogenesis of their hierarchically structured silica patterns are not understood, yet such insight could indicate novel routes toward synthesizing functional inorganic materials. Recent advances in imaging nascent diatom silica allow rationalizing possible mechanisms of their pattern formation. Here, we combine theory and experiments on the model diatom Thalassiosira pseudonana to put forward a minimal model of branched rib patterns-a fundamental feature of the silica cell wall. We quantitatively recapitulate the time course of rib pattern morphogenesis by accounting for silica biochemistry with autocatalytic formation of diffusible silica precursors followed by conversion into solid silica. We propose that silica deposition releases an inhibitor that slows down up-stream precursor conversion, thereby implementing a self-replicating reaction-diffusion system different from a classical Turing mechanism. The proposed mechanism highlights the role of geometrical cues for guided self-organization, rationalizing the instructive role for the single initial pattern seed known as the primary silicification site. The mechanism of branching morphogenesis that we characterize here is possibly generic and may apply also in other biological systems.


Assuntos
Diatomáceas , Dióxido de Silício , Dióxido de Silício/química , Diatomáceas/química , Morfogênese
3.
Proc Natl Acad Sci U S A ; 119(49): e2211549119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459651

RESUMO

Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein-protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid-liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology.


Assuntos
Diatomáceas , Diatomáceas/genética , Dióxido de Silício , Morfogênese/genética , Repetição de Anquirina , Biomineralização
4.
PLoS Comput Biol ; 17(4): e1008826, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844682

RESUMO

Sperm of marine invertebrates have to find eggs cells in the ocean. Turbulent flows mix sperm and egg cells up to the millimeter scale; below this, active swimming and chemotaxis become important. Previous work addressed either turbulent mixing or chemotaxis in still water. Here, we present a general theory of sperm chemotaxis inside the smallest eddies of turbulent flow, where signaling molecules released by egg cells are spread into thin concentration filaments. Sperm cells 'surf' along these filaments towards the egg. External flows make filaments longer, but also thinner. These opposing effects set an optimal flow strength. The optimum predicted by our theory matches flow measurements in shallow coastal waters. Our theory quantitatively agrees with two previous fertilization experiments in Taylor-Couette chambers and provides a mechanistic understanding of these early experiments. 'Surfing along concentration filaments' could be a paradigm for navigation in complex environments in the presence of turbulent flow.


Assuntos
Organismos Aquáticos/fisiologia , Quimiotaxia/fisiologia , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Animais , Masculino
6.
Chaos ; 32(1): 013124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35105113

RESUMO

Carpets of beating cilia represent a paradigmatic example of self-organized synchronization of noisy biological oscillators, characterized by traveling waves of cilia phase. We present a multi-scale model of a cilia carpet that comprises realistic hydrodynamic interactions between cilia computed for a chiral cilia beat pattern from unicellular Paramecium and active noise of the cilia beat. We demonstrate an abrupt loss of global synchronization beyond a characteristic noise strength. We characterize stochastic transitions between synchronized and disordered dynamics, which generalize the notion of phase slips in pairs of coupled noisy phase oscillators. Our theoretical work establishes a link between the two-dimensional Kuramoto model of phase oscillators with mirror-symmetric oscillator coupling and detailed models of biological oscillators with asymmetric, chiral interactions.


Assuntos
Cílios , Pisos e Cobertura de Pisos , Relógios Biológicos , Hidrodinâmica , Ruído
7.
PLoS Comput Biol ; 16(6): e1007965, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32598356

RESUMO

Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow-a feature known for hierarchical networks, but unexpected for plexus-like networks. We quantify network resilience in terms of a permeability-at-risk, i.e., permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.


Assuntos
Fígado/anatomia & histologia , Modelos Biológicos , Humanos , Fígado/irrigação sanguínea , Microvasos/anatomia & histologia
8.
PLoS Comput Biol ; 16(12): e1008412, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301446

RESUMO

How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.


Assuntos
Polaridade Celular , Animais , Forma Celular , Hepatócitos/citologia , Cristais Líquidos/química , Camundongos , Modelos Teóricos
9.
Eur Phys J E Soft Matter ; 44(4): 49, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33834308

RESUMO

We present a multi-scale modeling and simulation framework for low-Reynolds number hydrodynamics of shape-changing immersed objects, e.g., biological microswimmers and active surfaces. The key idea is to consider principal shape changes as generalized coordinates and define conjugate generalized hydrodynamic friction forces. Conveniently, the corresponding generalized friction coefficients can be pre-computed and subsequently reused to solve dynamic equations of motion fast. This framework extends Lagrangian mechanics of dissipative systems to active surfaces and active microswimmers, whose shape dynamics is driven by internal forces. As an application case, we predict in-phase and anti-phase synchronization in pairs of cilia for an experimentally measured cilia beat pattern.

10.
Eur Phys J E Soft Matter ; 44(5): 67, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974155

RESUMO

Sperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell's motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors.


Assuntos
Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Constrição , Fertilização , Humanos , Hidrodinâmica , Masculino , Modelos Biológicos , Transdução de Sinais , Natação
11.
Small ; 16(24): e2000213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32431083

RESUMO

Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on-off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids.


Assuntos
Oviductos , Espermatozoides , Animais , Bovinos , Meios de Cultura , Feminino , Humanos , Masculino , Reologia , Viscosidade
12.
Phys Rev Lett ; 124(11): 118101, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242704

RESUMO

We present a theory of chemokinetic search agents that regulate directional fluctuations according to distance from a target. A dynamic scattering effect reduces the probability to penetrate regions with high fluctuations and thus reduces search success for agents that respond instantaneously to positional cues. In contrast, agents with internal states that initially suppress chemokinesis can exploit scattering to increase their probability to find the target. Using matched asymptotics between the case of diffusive and ballistic search, we obtain analytic results beyond Fox colored noise approximation.

13.
PLoS Comput Biol ; 14(4): e1006109, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29672515

RESUMO

To navigate their surroundings, cells rely on sensory input that is corrupted by noise. In cells performing chemotaxis, such noise arises from the stochastic binding of signalling molecules at low chemoattractant concentrations. We reveal a fundamental relationship between the speed of chemotactic steering and the strength of directional fluctuations that result from the amplification of noise in a chemical input signal. This relation implies a trade-off between steering that is slow and reliable, and steering that is fast but less reliable. We show that dynamic switching between these two modes of steering can substantially increase the probability to find a target, such as an egg to be found by sperm cells. This decision making confers no advantage in the absence of noise, but is beneficial when chemical signals are detectable, yet characterized by low signal-to-noise ratios. The latter applies at intermediate distances from a target, where signalling molecules are diluted, thus defining a 'noise zone' that cells have to cross. Our results explain decision making observed in recent experiments on sea urchin sperm chemotaxis. More generally, our theory demonstrates how decision making enables chemotactic agents to cope with high levels of noise in gradient sensing by dynamically adjusting the persistence length of a biased random walk.


Assuntos
Quimiotaxia/fisiologia , Modelos Biológicos , Espermatozoides/fisiologia , Animais , Arbacia/fisiologia , Fatores Quimiotáticos/fisiologia , Biologia Computacional , Tomada de Decisões , Masculino , Cadeias de Markov , Transdução de Sinais , Motilidade dos Espermatozoides/fisiologia , Processos Estocásticos
14.
Phys Rev Lett ; 120(19): 198102, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799239

RESUMO

We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.


Assuntos
Padronização Corporal/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Modelos Animais , Transdução de Sinais
15.
16.
Phys Rev Lett ; 117(25): 258101, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036211

RESUMO

Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.


Assuntos
Chlamydomonas/fisiologia , Flagelos/fisiologia , Modelos Biológicos , Cílios , Movimento
17.
Proc Natl Acad Sci U S A ; 110(45): 18058-63, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145440

RESUMO

The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this "cell-body rocking" provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory.


Assuntos
Chlamydomonas/fisiologia , Flagelos/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Hidrodinâmica , Microscopia de Vídeo
18.
Phys Rev Lett ; 114(13): 138101, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25884138

RESUMO

Biological patterns generated during development and regeneration often scale with organism size. Some organisms, e.g., flatworms, can regenerate a rescaled body plan from tissue fragments of varying sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is self-organized and self-scaling. A feedback loop involving diffusing expander molecules regulates the reaction rates of a Turing system, thereby adjusting pattern length scales proportional to system size. Our model captures essential features of body plan regeneration in flatworms as observed in experiments.


Assuntos
Padronização Corporal/fisiologia , Modelos Biológicos , Regeneração/fisiologia , Animais , Planárias
19.
Phys Rev Lett ; 113(4): 048101, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105656

RESUMO

The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q = 38.0 ± 16.7 (mean ± s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.


Assuntos
Flagelos/fisiologia , Modelos Biológicos , Processos Estocásticos , Natação
20.
PLoS Comput Biol ; 8(6): e1002544, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685394

RESUMO

Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.


Assuntos
Actinas/química , Actinas/fisiologia , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Biologia Computacional , Simulação por Computador , Modelos Biológicos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Miosinas/química , Miosinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA