Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 9(12): 1161, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478297

RESUMO

Malignant bone disease (MBD) occurs when tumors establish in bone, causing catastrophic tissue damage as a result of accelerated bone destruction and inhibition of repair. The resultant so-called osteolytic lesions (OL) take the form of tumor-filled cavities in bone that cause pain, fractures, and associated morbidity. Furthermore, the OL microenvironment can support survival of tumor cells and resistance to chemotherapy. Therefore, a deeper understanding of OL formation and MBD progression is imperative for the development of future therapeutic strategies. Herein, we describe a novel in vitro platform to study bone-tumor interactions based on three-dimensional co-culture of osteogenically enhanced human mesenchymal stem cells (OEhMSCs) in a rotating wall vessel bioreactor (RWV) while attached to micro-carrier beads coated with extracellular matrix (ECM) composed of factors found in anabolic bone tissue. Osteoinhibition was recapitulated in this model by co-culturing the OEhMSCs with a bone-tumor cell line (MOSJ-Dkk1) that secretes the canonical Wnt (cWnt) inhibitor Dkk-1, a tumor-borne osteoinhibitory factor widely associated with several forms of MBD, or intact tumor fragments from Dkk-1 positive patient-derived xenografts (PDX). Using the model, we observed that depending on the conditions of growth, tumor cells can biochemically inhibit osteogenesis by disrupting cWnt activity in OEhMSCs, while simultaneously co-engrafting with OEhMSCs, displacing them from the niche, perturbing their activity, and promoting cell death. In the absence of detectable co-engraftment with OEhMSCs, Dkk-1 positive PDX fragments had the capacity to enhance OEhMSC proliferation while inhibiting their osteogenic differentiation. The model described has the capacity to provide new and quantifiable insights into the multiple pathological mechanisms of MBD that are not readily measured using monolayer culture or animal models.


Assuntos
Doenças Ósseas/genética , Neoplasias Ósseas/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Animais , Reatores Biológicos , Doenças Ósseas/patologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Técnicas de Cultura de Células , Diferenciação Celular/genética , Proliferação de Células/genética , Técnicas de Cocultura , Matriz Extracelular/genética , Matriz Extracelular/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células-Tronco Mesenquimais/patologia , Osteólise/genética , Osteólise/patologia , Microambiente Tumoral/genética , Via de Sinalização Wnt/genética
2.
J Bone Miner Res ; 30(1): 83-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25130615

RESUMO

Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.


Assuntos
Regeneração Óssea , Criopreservação , Proteínas da Matriz Extracelular/biossíntese , Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Animais , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA