Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Chem ; 85(4): 2200-7, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23368968

RESUMO

RNA is involved in fundamental biological functions when bacterial pathogens replicate. Identifying and studying small molecules that can interact with bacterial RNA and interrupt cellular activities is a promising path for drug design. Aminoglycoside (AMG) antibiotics, prominent natural products that recognize RNA specifically, exert their biological functions by binding to prokaryotic ribosomal RNA and interfering with protein translation, ultimately resulting in bacterial cell death. The decoding site, a small internal loop within the 16S rRNA, is the molecular target for the AMG antibiotics. The specificity of neomycin B, a highly potent AMG antibiotic, to the ribosomal decoding RNA site, was previously studied by observing AMG-RNA complexes in solution. Here, we study this interaction using localized surface plasmon resonance (LSPR) transducers comprising gold island films prepared by evaporation on glass and annealing. Small molecule AMG receptors were immobilized on the Au islands via polyethylene glycol (PEG)-thiol linkers, and the interaction with target RNA in solution was studied by monitoring the change in the LSPR optical response upon binding. The results show high-affinity binding of neomycin to 27-nucleotide model A-site RNA sequence in the nanomolar range, while no specific binding is observed for synthetic RNA oligomers (e.g., poly-U). The impact of specific base substitutions in the A-site RNA constructs on binding affinity and selectivity is determined quantitatively. It is concluded that LSPR is a powerful tool for providing molecular insight into small molecule-RNA interactions and for the design and screening of selective antimicrobial drugs.


Assuntos
Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , RNA Ribossômico 16S/metabolismo , Ressonância de Plasmônio de Superfície , Aminoglicosídeos/química , Antibacterianos/química , Framicetina/química , Ouro/química , Cinética , Nanopartículas Metálicas/química , Polietilenoglicóis/química , RNA Ribossômico 16S/química , Eletricidade Estática
2.
Adv Biosyst ; 3(11): e1900001, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32648689

RESUMO

Cancer is the second leading cause of death globally. Matching proper treatment and dosage is crucial for a positive outcome. Any given drug may affect patients with similar tumors differently. Personalized medicine aims to address this issue. Unfortunately, most cancer samples cannot be expanded in culture, limiting conventional cell-based testing. Herein, presented is a microfluidic device that combines a drug microarray with cell microscopy. The device can perform 512 experiments to test chemosensitivity and resistance to a drug array. MCF7 and 293T cells are cultured inside the device and their chemosensitivity and resistance to docetaxel, applied at various concentrations, are determined. Cell mortality is determined as a function of drug concentration and exposure time. It is found that both cell types form cluster morphology within the device, not evident in conventional tissue culture under similar conditions. Cells inside the clusters are less sensitive to drugs than dispersed cells. These findings support a heterogenous response of cancer cells to drugs. Then demonstrated is the principle of drug microarrays by testing cell response to four different drugs at four different concentrations. This approach may enable the personalization of treatment to the particular tumor and patient and may eventually improve final patient outcome.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Neoplasias , Medicina de Precisão , Humanos , Células MCF-7 , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Lab Chip ; 17(3): 557-566, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28102868

RESUMO

Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (µDAS) for full device production. µDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the µDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the µDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 µm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The µDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.


Assuntos
Automação/métodos , Desenho de Equipamento/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Dimetilpolisiloxanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA