Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 45(19): 1657-1666, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551316

RESUMO

Time-dependent density functional theory (TDDFT) simulations are conducted on a series of chiral gold/silver alloy nanowires to explore whether silver doping can produce an enhancement of circular dichroism at the plasmon resonance in these systems, and to identify the quantum-mechanical origin of the observed effects. We find a strong plasmonic dichroism when one or two helixes of gold atoms are substituted by silver in a linear chiral nanotube, whose pure gold counterpart does not display any plasmonic dichroism, and we rationalize this finding in terms of "decoupling" the destructive interference of excitations in the pure gold nanotube via alloying. However, further attempts to increase the plasmonic dichroism by considering multi-shell gold nanowires in which one entire shell is doped with silver did not produce the desired effect, but rather a decrease in circular dichroism. We show that this latter result is due to a more severe destructive interference in the dipole excitation contributions, and suggest that further amplification should be possible in principle by properly tuning simultaneously the nanowire structure and chemical ordering.

2.
Chemistry ; : e202401565, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864572

RESUMO

We present our findings on the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment. .

3.
J Phys Chem A ; 127(46): 9723-9732, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939011

RESUMO

In this work, we investigate the electronic structure of a particular class of carbon nanocones having a pentagonal tip and C5v symmetry. The ground-state nature of the wave function for these structures can be predicted by the recently proposed generalized Hückel rule that extends the original Hückel rule for annulenes to this class of carbon nanocones. In particular, the structures here considered can be classified as closed-shell or anionic/cationic closed-shells, depending on the geometric characteristics of the cone. The goal of this work is to assess the relationship between the electronic configuration of these carbon nanocones and their ability to gain or lose an electron as well as their adsorption capability. For this, the geometry of these structures in the neutral or ionic forms, as well as systems containing either one lithium or fluorine atom, was optimized at the DFT/B3LYP level. It was found that the electron affinity, ionization potential, and the Li or F adsorption energy present an intimate connection to the ground-state wave function character predicted by the generalized Hückel rule. In fact, a peculiar oscillatory energy behavior was discovered, in which the electron affinity, ionization energy, and adsorption energies oscillate with an increase in the nanocone size. The reasoning behind this is that if the anion is closed-shell, then the neutral nanocone will turn out to be a good electron acceptor, increasing the electron affinity and lithium adsorption energy. On the other hand, in the case of a closed-shell cation, this means that the neutral nanocone will easily lose an electron, leading to a smaller ionization potential and higher fluorine adsorption energy.

4.
J Phys Chem A ; 127(49): 10412-10424, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38039331

RESUMO

Plasmonic metal nanoparticles are efficient light harvesters with a myriad of sensing- and energy-related applications. For such applications, the optical properties of nanoparticles of metals such as Cu, Ag, and Au can be tuned by controlling the composition, particle size, and shape, but less is known about the effects of oxidation on the plasmon resonances. In this work, we elucidate the effects of O adsorption on the optical properties of Ag particles by evaluating the thermodynamic properties of O-decorated Ag particles with calculations based on the density functional theory and subsequently computing the photoabsorption spectra with a computationally efficient time-dependent density functional theory approach. We identify stable Ag nanoparticle structures with oxidized edges and a quenching of the plasmonic character of the metal particles upon oxidation and trace back this effect to the sp orbitals (or bands) of Ag particles being involved both in the plasmonic excitation and in the hybridization to form bonds with the adsorbed O atoms. Our work has important implications for the understanding and application of plasmonic metal nanoparticles and plasmon-mediated processes under oxidizing environments.

5.
J Comput Chem ; 43(28): 1923-1935, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36069663

RESUMO

A new set of auxiliary basis function suitable to fit the induced electron density is presented. Such set has been optimized in order to furnish accurate absorption spectra using the complex polarizability algorithm of time-dependent density functional theory (TDDFT). An automatic procedure has been set up, able, thanks to the definition of suitable descriptors, to evaluate the resemblance of the auxiliary basis-dependent calculated spectra with respect to a reference. In this way, it has been possible to reduce the size of the basis set maximizing the basis set accuracy. Thanks to the choice to employ a collection of molecules for each element, such basis has proven transferable to molecules outside the collection. The final sets are therefore much more accurate and smaller than the previously optimized ones and have been already included in the database of the last release of the AMS suite of programs. The availability of the present new set will allow to improve drastically the applicability range of the polTDDFT method with higher accuracy and less computational effort.


Assuntos
Algoritmos , Teoria da Densidade Funcional
6.
J Phys Chem A ; 126(40): 7137-7146, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36173265

RESUMO

We report a benchmark study of vertical excitation energies and oscillator strengths for the HOMO → LUMO transitions of 17 boron-dipyrromethene (BODIPY) structures, showing a large variety of ring sizes and substituents. Results obtained at the time-dependent density functional theory (TDDFT) and at the delta-self-consistent-field (ΔSCF) by using 13 different exchange correlation kernels (within LDA, GGA, hybrid, and range-separated approximations) are benchmarked against the experimental excitation energies when available. It is found that the time-independent ΔSCF DFT method, when used in combination with hybrid PBE0 and B3LYP functionals, largely outperforms TDDFT and can be quite competitive, in terms of accuracy, with computationally more costly wave function based methods such as CC2 and CASPT2.

7.
J Phys Chem A ; 126(39): 6870-6881, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36168982

RESUMO

The electronic characterization of the cyanuric acid both in gas phase and when embedded within an H-bonded scheme forming a monolayer on the Au(111) surface has been performed by means of X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The experimental spectra at the N, O, and C K-edges have been assigned with the support of DFT calculations, and the combination between theory and experiment has allowed to us investigate the effect of the H-bonding intermolecular interaction on the spectra. In particular, the H-bond formation in the monolayer leads to a quenching of the N 1s NEXAFS resonances associated with transitions to the sigma empty orbitals localized on the N-H portion of the imide group. On the other hand, the π* empty states remain substantially unperturbed. From a computational point of view, it has been shown that the DFT-TP scheme is not able to describe the N 1s NEXAFS spectra of these systems, and the configuration mixing has to be included, through the TDDFT approach in conjunction with the range-separated XC CAM-B3LYP functional, to obtain a correct reproduction of the N 1s core spectra.

8.
J Phys Chem A ; 125(19): 4160-4172, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33961434

RESUMO

The near-edge X-ray absorption fine structure (NEXAFS) spectra of indole, 2,3-dihydro-7-azaindole, and 3-formylindole in the gas phase have been measured at the carbon and nitrogen K-edges. The spectral features have been interpreted based on density functional theory (DFT) calculations within the transition potential (TP) scheme, which is accurate enough for a general description of the measured C 1s NEXAFS spectra as well as for the assignment of the most relevant features. For the nitrogen K-edge, the agreement between experimental data and theoretical spectra calculated with TP-DFT was not quite satisfactory. This discrepancy was mainly attributed to the many-body effects associated with the excitation of the core electron, which are better described using the time-dependent density functional theory (TDDFT) with the range-separated hybrid functional CAM-B3LYP. An assignment of the measured N 1s NEXAFS spectral features has been proposed together with a complete description of the observed resonances. Intense transitions from core levels to unoccupied antibonding π* states as well as several transitions with mixed-valence/Rydberg or pure Rydberg character have been observed in the C and N K-edge spectra of all investigated indoles.

9.
J Chem Phys ; 155(8): 084103, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470368

RESUMO

We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.

10.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011325

RESUMO

We report a computational study at the time-dependent density functional theory (TDDFT) level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore whether it is possible to overcome destructive interference in single nanowires that damp chiral response in these systems and to achieve intense plasmonic circular dichroism (CD) through a coupling between the nanostructures. We predict a huge enhancement of circular dichroism at the plasmon resonance when two chiral nanowires are intimately coupled in an achiral relative arrangement. Such an effect is even more pronounced when two chiral nanowires are coupled in a chiral relative arrangement. Individual component maps of rotator strength, partial contributions according to the magnetic dipole component, and induced densities allow us to fully rationalize these findings, thus opening the way to the field of plasmonic CD and its rational design.

11.
J Phys Chem A ; 124(20): 4115-4127, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32329341

RESUMO

The valence and core-level photoelectron spectra of gaseous indole, 2,3-dihydro-7-azaindole, and 3-formylindole have been investigated using VUV and soft X-ray radiation supported by both an ab initio electron propagator and density functional theory calculations. Three methods were used to calculate the outer valence band photoemission spectra: outer valence Green function, partial third order, and renormalized partial third order. While all gave an acceptable description of the valence spectra, the last method yielded very accurate agreement, especially for indole and 3-formylindole. The carbon, nitrogen, and oxygen 1s core-level spectra of these heterocycles were measured and assigned. The double ionization appearance potential for indole has been determined to be 21.8 ± 0.2 eV by C 1s and N 1s Auger photoelectron spectroscopy. Theoretical analysis identifies the doubly ionized states as a band consisting of two overlapping singlet states and one triplet state with dominant configurations corresponding to holes in the two uppermost molecular orbitals. One of the singlet states and the triplet state can be described as consisting largely of a single configuration, but other doubly ionized states are heavily mixed by configuration interactions. This work provides full assignment of the relative binding energies of the core level features and an analysis of the electronic structure of substituted indoles in comparison with the parent indole.

12.
J Chem Phys ; 152(18): 184104, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414253

RESUMO

A hybrid approach able to perform Time Dependent Density Functional Theory (TDDFT) simulations with the same accuracy as that of hybrid exchange-correlation (xc-) functionals but at a fraction of the computational cost is developed, implemented, and validated. The scheme, which we name Hybrid Diagonal Approximation (HDA), consists in employing in the response function a hybrid xc-functional (containing a fraction of the non-local Hartree-Fock exchange) only for the diagonal elements of the omega matrix, while the adiabatic local density approximation is employed for the off-diagonal terms. HDA is especially (but not exclusively) advantageous when using Slater type orbital basis sets and allows one to employ them in a uniquely efficient way, as we demonstrate here by implementing HDA in a local version of the Amsterdam Density Functional code. The new protocol is tested on NH3, C6H6, and the [Au25(SCH3)18]- cluster as prototypical cases ranging from small molecules to ligand-protected metal clusters, finding excellent agreement with respect to both full kernel TDDFT simulations and experimental data. Additionally, a specific comparison test between full kernel and HDA is considered at the Casida level on seven other molecular species, which further confirm the accuracy of the approach for all investigated systems. For the [Au25(SCH3)18]- cluster, a speedup by a factor of seven is obtained with respect to the full kernel. The HDA, therefore, promises to provide a quantitative description of the optical properties of medium-sized systems (nanoclusters) at an affordable cost, thanks to its computational efficiency, especially in combination with a complex polarization algorithm version of TDDFT.

13.
Phys Chem Chem Phys ; 21(7): 3585-3596, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30255885

RESUMO

TDDFT simulations of the absorption and CD spectra of a Pd2Au36(SC2H4Ph)24 monolayer-protected cluster (MPC) are carried out with the aim of investigating the effects of doping, conformational degrees of freedom of the thiolates' end-groups, and charge states on the optical and dichroic response of a prototypical MPC species. Clear signatures of Pd doping in both absorption and CD spectra are found to be a consequence of the participation of Pd (4d) states in the ligand-based d-band and on the unoccupied MOs of lower energy. Exploration of conformational space points to a much greater sensitivity of optical rotation to the conformation of the end-groups of the organic monolayer compared to absorption. Finally, the effect of charge is mainly seen as a decreased dependence of the dichroic response on conformation. The agreement between the TDDFT predictions and the available experimental data is good, and enables an assignment of absorption and CD bands to specific classes of one-particle excitations.

14.
J Chem Phys ; 151(12): 124105, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575180

RESUMO

High resolution X-ray photoelectron spectra of a series of substituted pyridines (pyridine, 2-fluoropyridine, and 2,6-difluoropyridine) have been recorded and rationalized by means of a quantum mechanical approach based on the density functional theory including vibronic effects at the Franck-Condon level. The significant chemical shifts of the C1s binding energies induced by fluorine atoms are reproduced quantitatively by our computational model, as well as the vibrational fine structure and the band shapes. Nonsymmetric normal modes play an important role due to the core-hole localization in the presence of equivalent carbon atoms in pyridine and 2,6-difluoropyridine.

15.
J Chem Phys ; 151(13): 134306, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594342

RESUMO

We performed a theoretical investigation on the influence of electronic correlation effects on the B1s NEXAFS spectrum of boronic acid derivatives, namely, boric acid [B(OH)3], phenyl boronic acid (PBA), and 1,4-phenyl diboronic acid (PDBA), employing different computational schemes of increasing complexity, ranging from the purely one-electron scheme based on the transition potential method of density functional theory (DFT-TP), time-dependent DFT (TDDFT), and multiconfigurational self-consistent field (MCSCF). We also report experimental measurements of the B1s NEXAFS spectra of the aforementioned molecules together with the high-resolution C1s NEXAFS spectrum of PBA. We demonstrate that due to the shallow B1s core energy levels compared to C, O, and N, the inclusion of static correlation effects, which can be incorporated by using multireference approaches to excited states, assumes a decisive role in reconciling experiment and theory on B1s core-electron excitation energies and oscillator strengths to valence states. This claim is corroborated by the good agreement that we find between the DFT-TP calculated C1s NEXAFS spectrum and that experimentally measured for PBA and by the failure of both DFT-TP and TDDFT approaches with a selection of xc functionals kernels to properly describe the B1s NEXAFS spectrum of PBA and PDBA, at variance with the good agreement with the experiment that is found by employing the MCSCF wave function approach.

16.
Phys Chem Chem Phys ; 17(3): 2001-11, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25475366

RESUMO

The unoccupied electronic structure of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin thick films deposited on SiO2/Si(100) native oxide surfaces has been thoroughly studied by combining the outcomes of near-edge X-ray absorption fine structure spectroscopy at the C, N, and F K-edges with those of scalar relativistic zeroth order regular approximation time-dependent density functional theory calculations carried out on isolated molecules. Both experimental and theoretical results concur to stress the electronic inertness of pristine porphyrin macrocycle based 1s(C)→π* and 1s(N)→π* transitions whose excitation energies are substantially unaffected upon fluorination. The obtained results complement those published by the same group about the occupied states of both molecules, thus providing the missing tile to get a thorough description of the halide decoration effects on the electronic structure of the tetrakis(phenyl)-porphyrin.

17.
J Chem Phys ; 143(2): 024106, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26178089

RESUMO

A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The method has been applied to very different systems in nature and size (from H2 to [Au147](-)). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented.

18.
J Chem Phys ; 143(20): 204102, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26627945

RESUMO

In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.

19.
J Chem Phys ; 141(4): 044313, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084916

RESUMO

We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 - n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.


Assuntos
Fenantrenos/química , Espectroscopia Fotoeletrônica/métodos , Compostos Policíclicos/química , Vibração , Espectroscopia por Absorção de Raios X/métodos , Simulação por Computador , Gases/química , Modelos Químicos , Estrutura Molecular
20.
J Phys Chem A ; 117(51): 14075-85, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24283347

RESUMO

L-edge near-edge X-ray fine structure spectroscopy (NEXAFS) has become a powerful tool to study the electronic structure and dynamics of metallo-organic and biological compounds in solution. Here, we present a series of density functional theory calculations of Fe L-edge NEXAFS for spin crossover (SCO) complexes within the time-dependent framework. Several key factors that control the L-edge excitations have been carefully examined using an Fe(II) polypyridyl complex [Fe(tren(py)3)](2+) (where tren(py)3 = tris(2-pyridylmethyliminoethyl)amine) as a model system. It is found that the electronic spectra of the low-spin (LS, singlet), intermediate-spin (IS, triplet), and high-spin (HS, quintet) states have distinct profiles. The relative energy positions, but not the spectral profiles, of different spin states are sensitive to the choice of the functionals. The inclusion of the vibronic coupling leads to almost no visible change in the resulting NEXAFS spectra because it is governed only by low-frequency modes of less than 500 cm(-1). With the help of the molecular dynamics sampling in acetonitrile at 300 K, our calculations reveal that the thermal motion can lead to a noticeable broadening of the spectra. The main peak position is strongly associated with the length of the Fe-N bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA