RESUMO
Mark-recapture surveys are commonly used to monitor translocated populations globally. Data gathered are then used to estimate demographic parameters, such as abundance and survival, using Jolly-Seber (JS) models. However, in translocated populations initial population size is known and failure to account for this may bias parameter estimates, which are important for informing conservation decisions during population establishment. Here, we provide methods to account for known initial population size in JS models by incorporating a separate component likelihood for translocated individuals, using a maximum-likelihood estimation, with models that can be fitted using either R or MATLAB. We use simulated data and a case study of a threatened lizard species with low capture probability to demonstrate that unconstrained JS models may overestimate the size of translocated populations, especially in the early stages of post-release monitoring. Our approach corrects this bias; we use our simulations to demonstrate that overestimates of population size between 78% and 130% can occur in the unconstrained JS models when the detection probability is below 0.3 compared to 1%-8.9% for our constrained model. Our case study did not show an overestimate; however accounting for the initial population size greatly reduced error in all parameter estimates and prevented boundary estimates. Adopting the corrected JS model for translocations will help managers to obtain more robust estimates of the population sizes of translocated animals, better informing future management including reinforcement decisions, and ultimately improving translocation success.
Assuntos
Espécies em Perigo de Extinção , Animais , Densidade Demográfica , ProbabilidadeRESUMO
This article presents a new method for modelling collective movement in continuous time with behavioural switching, motivated by simultaneous tracking of wild or semi-domesticated animals. Each individual in the group is at times attracted to a unobserved leading point. However, the behavioural state of each individual can switch between 'following' and 'independent'. The 'following' movement is modelled through a linear stochastic differential equation, while the 'independent' movement is modelled as Brownian motion. The movement of the leading point is modelled either as an Ornstein-Uhlenbeck (OU) process or as Brownian motion (BM), which makes the whole system a higher-dimensional Ornstein-Uhlenbeck process, possibly an intrinsic non-stationary version. An inhomogeneous Kalman filter Markov chain Monte Carlo algorithm is developed to estimate the diffusion and switching parameters and the behaviour states of each individual at a given time point. The method successfully recovers the true behavioural states in simulated data sets , and is also applied to model a group of simultaneously tracked reindeer (Rangifer tarandus).