RESUMO
Previous studies have prioritized trait-relevant cell types by looking for an enrichment of genome-wide association study (GWAS) signal within functional regions. However, these studies are limited in cell resolution by the lack of functional annotations from difficult-to-characterize or rare cell populations. Measurement of single-cell gene expression has become a popular method for characterizing novel cell types, and yet limited work has linked single-cell RNA sequencing (RNA-seq) to phenotypes of interest. To address this deficiency, we present RolyPoly, a regression-based polygenic model that can prioritize trait-relevant cell types and genes from GWAS summary statistics and gene expression data. RolyPoly is designed to use expression data from either bulk tissue or single-cell RNA-seq. In this study, we demonstrated RolyPoly's accuracy through simulation and validated previously known tissue-trait associations. We discovered a significant association between microglia and late-onset Alzheimer disease and an association between schizophrenia and oligodendrocytes and replicating fetal cortical cells. Additionally, RolyPoly computes a trait-relevance score for each gene to reflect the importance of expression specific to a cell type. We found that differentially expressed genes in the prefrontal cortex of individuals with Alzheimer disease were significantly enriched with genes ranked highly by RolyPoly gene scores. Overall, our method represents a powerful framework for understanding the effect of common variants on cell types contributing to complex traits.
Assuntos
Doença de Alzheimer/genética , Microglia/metabolismo , Oligodendroglia/metabolismo , Esquizofrenia/genética , Análise de Célula Única/estatística & dados numéricos , Software , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Simulação por Computador , Feto , Estudo de Associação Genômica Ampla , Humanos , Microglia/patologia , Modelos Genéticos , Oligodendroglia/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Locos de Características Quantitativas , Esquizofrenia/diagnóstico , Esquizofrenia/patologia , Análise de Célula Única/métodos , TranscriptomaRESUMO
Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H), in Drosophila], and RNA Polymerase II (Pol II) immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE) over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl) genes were the most rapidly upregulated, with Su(H), Pol II, and transcript levels increasing within 5-10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H) binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(spl)bHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(spl)bHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Drosophila , Drosophila , Receptores Notch , Proteínas Repressoras , Transdução de Sinais/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Sequência Conservada/genética , Proteínas de Ligação a DNA , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Ativação TranscricionalRESUMO
Spaceflight associated neuro-ocular syndrome (SANS) is associated with acquired optic disc edema, hyperopia, and posterior globe flattening in some astronauts during long-duration spaceflight possibly due to the headward fluid redistribution in microgravity. The goal of this study was to assess whether strict head-down tilt (HDT) bed rest as a spaceflight analog would produce globe flattening and whether centrifugation could prevent these changes. Twenty-four healthy subjects separated into three groups underwent 60 days of strict 6° HDT bed rest: one control group with no countermeasure (n = 8) and two countermeasure groups exposed to 30 min daily of short-arm centrifugation as a means of artificial gravity (AG), either intermittent (iAG, n = 8) or continuous (cAG, n = 8). Magnetic resonance images (MRI) were collected at baseline, HDT-day 14, HDT-day 52, and 3 days after bed rest. An automated method was applied to quantify posterior globe volume displacement compared with baseline scans. On average, subjects showed an increasing degree of globe volume displacement with bed rest duration (means ± SE: 1.41 ± 1.01 mm3 on HDT14 and 4.04 ± 1.19 mm3 on HDT52) that persisted post-bed rest (5.51 ± 1.26 mm3). Application of 30 min daily AG did not have a significant impact on globe volume displacement (P = 0.42 for cAG and P = 0.93 for iAG compared with control). These results indicate that strict 6° HDT bed rest produced displacement of the posterior globe with a trend of increasing displacement with longer duration that was not prevented by daily 30 min exposure to AG.NEW & NOTEWORTHY Head-down tilt (HDT) bed rest is commonly used as a spaceflight analog for investigating spaceflight associated neuro-ocular syndrome (SANS). Posterior ocular globe flattening has been identified in astronauts with SANS but until now has not been investigated during HDT bed rest. In this study, posterior ocular globe volume displacement was quantified before, during, and after HDT bed rest and countermeasures were tested for their potential to reduce the degree of globe flattening.
Assuntos
Gravidade Alterada , Voo Espacial , Humanos , Decúbito Inclinado com Rebaixamento da Cabeça , Repouso em Cama , Astronautas , Imageamento por Ressonância MagnéticaRESUMO
Spaceflight is known to cause ophthalmic changes in a condition known as spaceflight-associated neuro-ocular syndrome (SANS). It is hypothesized that SANS is caused by cephalad fluid shifts and potentially mild elevation of intracranial pressure (ICP) in microgravity. Head-down tilt (HDT) studies are a ground-based spaceflight analogue to create cephalad fluid shifts. Here, we developed non-invasive magnetic resonance imaging (MRI)-based techniques to quantify ophthalmic structural changes under acute 15° HDT. We specifically quantified: (i) change in optic nerve sheath (ONS) and optic nerve (ON) cross-sectional area, (ii) change in ON deviation, an indicator of ON tortuosity, (iii) change in vitreous chamber depth, and (iv) an estimated ONS Young's modulus. Under acute HDT, ONS cross-sectional area increased by 4.04 mm2 (95% CI 2.88-5.21 mm2, p < 0. 000), while ON cross-sectional area remained nearly unchanged (95% CI -0.12 to 0.43 mm2, p = 0.271). ON deviation increased under HDT by 0.20 mm (95% CI 0.08-0.33 mm, p = 0.002). Vitreous chamber depth decreased under HDT by -0.11 mm (95% CI -0.21 to -0.03 mm, p = 0.009). ONS Young's modulus was estimated to be 85.0 kPa. We observed a significant effect of sex and BMI on ONS parameters, of interest since they are known risk factors for idiopathic intracranial hypertension. The tools developed herein will be useful for future analyses of ON changes in various conditions.
Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça , Ausência de Peso , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Simulação de Ausência de PesoRESUMO
A detailed understanding of the CSF dynamics is needed for design and optimization of intrathecal drug delivery devices, drugs, and protocols. Preclinical research using large-animal models is important to help define drug pharmacokinetics-pharmacodynamics and safety. In this study, we investigated the impact of catheter implantation in the sub-dural space on CSF flow dynamics in Cynomolgus monkeys. Magnetic resonance imaging (MRI) was performed before and after catheter implantation to quantify the differences based on catheter placement location in the cervical compared to the lumbar spine. Several geometric and hydrodynamic parameters were calculated based on the 3D segmentation and flow analysis. Hagen-Poiseuille equation was used to investigate the impact of catheter implantation on flow reduction and hydraulic resistance. A linear mixed-effects model was used in this study to investigate if there was a statistically significant difference between cervical and lumbar implantation, or between two MRI time points. Results showed that geometric parameters did not change statistically across MRI measurement time points and did not depend on catheter location. However, catheter insertion did have a significant impact on the hydrodynamic parameters and the effect was greater with cervical implantation compared to lumbar implantation. CSF flow rate decreased up to 55% with the catheter located in the cervical region. The maximum flow rate reduction in the lumbar implantation group was 21%. Overall, lumbar catheter implantation disrupted CSF dynamics to a lesser degree than cervical catheter implantation and this effect remained up to two weeks post-catheter implantation in Cynomolgus monkeys.
Assuntos
Cateterismo , Líquido Cefalorraquidiano/metabolismo , Hidrodinâmica , Animais , Macaca fascicularis , Imageamento por Ressonância Magnética , MasculinoRESUMO
PURPOSE: RNA editing is a post-transcriptional process that alters the nucleotide sequences of certain transcripts, in vertebrate most often converting adenosines to inosines. Multiple studies have recently implicated RNA editing in cancer development; however, most studies have focused on recoding RNA editing events. The function and clinical relevance of noncoding RNA (ncRNA) editing events in cancers have not been systematically examined. PATIENTS AND METHODS: We improved our previously published pipeline to identify ncRNA editing sites from four human cancers: liver hepatocellular carcinoma, lung adenocarcinoma, kidney renal clear-cell carcinoma, and thyroid carcinoma. We then developed multiple advanced statistical models to identify significantly differential edited (DE) sites between tumor and normal samples and clinical relevance ncRNA editing sites, as well as to investigate the association between gene expression, ncRNA editing, and microRNAs. Finally, we validated computational results with experiments. RESULTS: We identified 3,788 ncRNA editing sites of high confidence from the four cancers. We found thousands of DE sites which had distinct profiles across the four cancers. In kidney cancer, which had the largest uncensored survival data among the four cancers, 80 DE sites were significantly associated with patient survival. We identified 3' untranslated region (UTR) RNA editing sites that can affect gene expression, either independent of or by working with microRNAs. We validated that the 3'UTR RNA editing sites in CWF19L1 and F11R genes resulted in increased protein levels and that alterations of the expression of the two genes affected the proliferation of human embryonic kidney cells. CONCLUSION: On the basis of our computational and experimental results, we hypothesize that 3'UTR editing sites may affect their host gene expression, thereby affecting cell proliferation.
Assuntos
Adenosina/genética , Inosina/genética , Neoplasias/genética , Edição de RNA , RNA não Traduzido , Regiões 3' não Traduzidas , Biomarcadores Tumorais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs , Neoplasias/mortalidade , Neoplasias/patologia , PrognósticoRESUMO
We performed multipoint linkage analysis of the electrophysiological trait ECB21 on chromosome 4 in the full pedigrees provided by the Collaborative Study on the Genetics of Alcoholism (COGA). Three Markov chain Monte Carlo (MCMC)-based approaches were applied to the provided and re-estimated genetic maps and to five different marker panels consisting of microsatellite (STRP) and/or SNP markers at various densities. We found evidence of linkage near the GABRB1 STRP using all methods, maps, and marker panels. Difficulties encountered with SNP panels included convergence problems and demanding computations.
Assuntos
Alcoolismo/genética , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Ligação Genética , Cadeias de Markov , Repetições de Microssatélites/genética , Método de Monte Carlo , Teorema de Bayes , Cromossomos Humanos Par 4/genética , Simulação por Computador , Comportamento Cooperativo , Bases de Dados Genéticas , Humanos , Característica Quantitativa HerdávelRESUMO
Quantitative genetic epistasis has been hypothesized to be an important factor in the development and progression of complex diseases. Cancers in particular are driven by the accumulation of mutations that may act epistatically during the course of the disease. However, as cancer mutations are uncovered at an unprecedented rate, determining which combinations of genetic alterations interact to produce cancer phenotypes remains a challenge. Here we show that by using combinatorial RNAi screening in cell culture, dense and often previously undetermined interactions among cancer genes were revealed by assessing gene pairs that are frequently co-altered in primary breast cancers. These interacting gene pairs are significantly associated with survival time when co-altered in patients, indicating that genetic interaction mapping may be leveraged to improve risk assessment. As many of these interacting gene pairs involve known drug targets, personalized treatment regimens may be improved by overlaying genetic interactions with mutational profiling.
Assuntos
Neoplasias da Mama/genética , Epistasia Genética/genética , Genes Neoplásicos/genética , RNA/genética , Linhagem Celular Tumoral , Feminino , Humanos , Mutação , Fenótipo , Interferência de RNARESUMO
DNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby influencing each cell's epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate specificity and processivity. Here we study these properties in vivo, by applying novel statistical analysis methods to double-stranded DNA methylation patterns collected using hairpin-bisulfite PCR. Our analysis fits a novel Hidden Markov Model (HMM) to the observed data, allowing for potential bisulfite conversion errors, and yields statistical estimates of parameters that quantify enzyme processivity and substrate specificity. We apply this model to methylation patterns established in vivo at three loci in humans: two densely methylated inactive X (Xi)-linked loci (FMR1 and G6PD), and an autosomal locus (LEP), where methylation densities are tissue-specific but moderate. We find strong evidence for a high level of processivity of DNMT1 at FMR1 and G6PD, with the mean association tract length being a few hundred base pairs. Regardless of tissue types, methylation patterns at LEP are dominated by DNMT1 maintenance events, similar to the two Xi-linked loci, but are insufficiently informative regarding processivity to draw any conclusions about processivity at that locus. At all three loci we find that DNMT1 shows a strong preference for adding methyl groups to hemi-methylated CpG sites over unmethylated sites. The data at all three loci also suggest low (possibly 0) association of the de novo methyltransferases, the DNMT3s, and are consequently uninformative about processivity or preference of these enzymes. We also extend our HMM to reanalyze published data on mouse DNMT1 activities in vitro. The results suggest shorter association tracts (and hence weaker processivity), and much longer non-association tracts than human DNMT1 in vivo.
Assuntos
Metilação de DNA/fisiologia , Metilases de Modificação do DNA/metabolismo , DNA/metabolismo , Modelos Biológicos , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Loci Gênicos/fisiologia , Humanos , Cadeias de Markov , CamundongosRESUMO
We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.