Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 096401, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489617

RESUMO

Calculating perturbation response properties of materials from first principles provides a vital link between theory and experiment, but is bottlenecked by the high computational cost. Here, a general framework is proposed to perform density functional perturbation theory (DFPT) calculations by neural networks, greatly improving the computational efficiency. Automatic differentiation is applied on neural networks, facilitating accurate computation of derivatives. High efficiency and good accuracy of the approach are demonstrated by studying electron-phonon coupling and related physical quantities. This work brings deep-learning density functional theory and DFPT into a unified framework, creating opportunities for developing ab initio artificial intelligence.

2.
Phys Rev Lett ; 125(8): 086401, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909795

RESUMO

Quantum anomalous Hall (QAH) insulator is the key material to study emergent topological quantum effects, but its ultralow working temperature limits experiments. Here, by first-principles calculations, we find a family of stable two-dimensional (2D) structures generated by lithium decoration of layered iron-based superconductor materials Fe X(X=S,Se,Te), and predict room-temperature ferromagnetic semiconductors together with large-gap high-Chern-number QAH insulators in the 2D materials. The extremely robust ferromagnetic order is induced by the electron injection from Li to Fe and stabilized by strong ferromagnetic kinetic exchange in the 2D Fe layer. While in the absence of spin-orbit coupling (SOC), the ferromagnetism polarizes the system into a half Dirac semimetal state protected by mirror symmetry, the SOC effect results in a spontaneous breaking of mirror symmetry and introduces a Dirac mass term, which creates QAH states with sizable gaps (several tens of meV) and multiple chiral edge modes. We also find a 3D QAH insulator phase featured by a macroscopic number of chiral conduction channels in bulk LiOH-LiFe X. The findings open new opportunities to realize novel QAH physics and applications at high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA