Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2312480120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134197

RESUMO

Tetrafluoromethane (CF4), the simplest perfluorocarbons, is a permanently potent greenhouse gas due to its powerful infrared radiation adsorption capacity. The highly symmetric and robust C-F bond structure makes its activation a great challenge. Herein, we presented an innovated approach that efficiently activates C-F bond utilizing protonated sulfate (-HSO4) modified Al2O3@ZrO2 (S-Al2O3@ZrO2) catalyst, resulting in highly efficient CF4 decomposition. By combining in situ infrared spectroscopy tests and density function theory simulations, we demonstrate that the introduced -HSO4 proton donor has a stronger interaction on the C-F bond than the hydroxyl (-OH) proton donor, which can effectively stretch the C-F bond for its activation. Consequently, the obtained S-Al2O3@ZrO2 catalyst achieved a stable 100% CF4 decomposition at a record low temperature of 580 °C with a turnover frequency value of ~8.3 times higher than the Al2O3@ZrO2 catalyst without -HSO4 modification, outperforming the previously reported results. This work paves a new way for achieving efficient C-F bond activation to decompose CF4 at a low temperature.

2.
Angew Chem Int Ed Engl ; 63(6): e202318792, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117669

RESUMO

Electroreduction of nitric oxide (NO) to NH3 (NORR) has gained extensive attention for the sake of low carbon emission and air pollutant treatment. Unfortunately, NORR is greatly hindered by its sluggish kinetics, especially under low concentrations of NO. Herein, we developed a chlorine (Cl) vacancy strategy to overcome this limitation over FeOCl nanosheets (FeOCl-VCl ). Density functional theory (DFT) calculations revealed that the Cl vacancy resulted in defective Fe with sharp d-states characteristics in FeOCl-VCl to enhance the absorption and activation of NO. In situ X-ray absorption near-edge structure (XANES) and attenuated total reflection-infrared spectroscopy (ATR-IR) verified the lower average oxidation state of defective Fe to enhance the electron transfer for NO adsorption/activation and facilitate the generation of key NHO and NHx intermediates. As a result, the FeOCl-VCl exhibited superior NORR activities with the NH3 Faradaic efficiency up to 91.1 % while maintaining a high NH3 yield rate of 455.4 µg cm-2 h-1 under 1.0 vol % NO concentration, competitive with those of previously reported literatures under higher NO concentration. Further, the assembled Zn-NO battery utilizing FeOCl-VCl as cathode delivered a record peak power density of 6.2 mW cm-2 , offering a new route for simultaneous NO removal, NH3 production, and energy supply.

3.
Angew Chem Int Ed Engl ; 63(28): e202405438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682249

RESUMO

The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.

4.
Chemistry ; 29(4): e202202669, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36251746

RESUMO

Step-scheme (S-scheme) heterojunctions have been extensively studied in photocatalytic carbon dioxide (CO2 ) reduction due to their excellent charge separation and high redox ability. The built-in electric field at the interface of a S-scheme heterojunction serves as the driving force for charge transfer, however, the poor interfacial contact greatly restricts the carrier migration rate. Herein, we synthesized the g-C3 N4 /Bi19 Br3 S27 S-scheme heterostructure through in situ deposition of Bi19 Br3 S27 (BBS) on porous g-C3 N4 (P-CN) nanosheets. The C-S bonds formed at the interface help to enhance the built-in electric field, thereby promoting the charge transfer and separation. As a result, the CO2 reduction reaction performance of 10 %Bi19 Br3 S27 /g-C3 N4 (BBS/P-CN) reaches 32.78 µmol g-1 h-1 , which is 341.4 and 18.7 times higher than that of pure BBS and P-CN, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) prove the presence of chemical bonds (C-S) between the P-CN and BBS. The S-scheme charge-transfer mechanism was analyzed via XPS and density functional theory (DFT) calculations. This work provides a new idea for designing heterojunction photocatalysts with interfacial chemical bonds to achieve high charge-transfer and catalytic activity.

5.
Chemistry ; 29(18): e202203152, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36626646

RESUMO

The selective synthesis of monomethylated amines with CO2 is particularly challenging because the formation of tertiary amines is thermodynamically more favorable. Herein, a new strategy for the controllable synthesis of N-monomethylated amines from primary amines and CO2 /H2 is explored. First-principle calculations reveal that the dissociation of H2 via an heterolytic route reduces the reactivity of methylated amines and thus inhibit successive methylation. In situ DRIFTS proves the process of formation and decomposition of ammonium salt by secondary amine reversible binding with H+ on the Ag/Al2 O3 catalyst, thereby reducing its reactivity. Meanwhile, the energy barrier for the rate-determining step of monomethylation was much lower than that of overmethylation (0.34 eV vs. 0.58 eV) means amines monomethylation in preference to successive methylation. Under optimal reaction conditions, a variety of amines were converted to the corresponding monomethylated amines in good to excellent yields, and more than 90 % yield of product was obtained.

6.
Chemphyschem ; 24(19): e202300050, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37466365

RESUMO

Single-atom M-N2 (M=Fe, Co, Ni) catalysts exhibit high activity for CO2 reduction reaction (CO2 RR). However, the CO2 RR mechanism and the origin of activity at the single-atom sites remain unclear, which hinders the development of single-atom M-N2 catalysts. Here, using density functional theory calculations, we reveal intermediates-induced CO2 RR activity at the single-atom M-N2 sites. At the M-N2 sites, the asymmetric *O*CO configuration tends to split into *CO and *OH intermediates. Intermediates become part of the active moiety to form M-(CO)N2 or M-(OH)N2 sites, which optimizes the adsorption of intermediates on the M sites. The maximum free energy differences along the optimal CO2 RR pathway are 0.30, 0.54, and 0.28 eV for Fe-(OH)N2 , Co-(CO)N2 , and Ni-(OH)N2 sites respectively, which is lower than those of Fe-N2 (1.03 eV), Co-N2 (1.24 eV) and Ni-N2 (0.73 eV) sites. The intermediate modification can shift the d-band center of the spin-up (minority) state downward by regulating the charge distribution at the M sites, leading to less charge being accepted by the intermediates from the M sites. This work provides new insights into the understanding of the activity of single-atom M-N2 sites.

7.
Nano Lett ; 22(15): 6276-6284, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913397

RESUMO

Silver is an attractive catalyst for converting CO2 into CO. However, the high CO2 activation barrier and the hydrogen evolution side reaction seriously limit its practical application and industrial perspective. Here, an ordered Ag nanoneedle array (Ag-NNAs) was prepared by template-assisted vacuum thermal-evaporation for CO2 electroreduction into CO. The nanoneedle array structure induces a strong local electric field at the tips, which not only reduces the activation barrier for CO2 electroreduction but also increases the energy barrier for the hydrogen evolution reaction (HER). Moreover, the array structure endows a high surface hydrophobicity, which can regulate the adsorption of water molecules at the interface and thus dynamically inhibit the competitive HER. As a result, the optimal Ag-NNAs exhibits 91.4% Faradaic efficiency (FE) of CO for over 700 min at -1.0 V vs RHE. This work provides a new concept for the application of nanoneedle array structures in electrocatalytic CO2 reduction reactions.

8.
Nano Lett ; 22(5): 1963-1970, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35166553

RESUMO

Electrocatalytic reduction of CO2 to multicarbon products is a potential strategy to solve the energy crisis while achieving carbon neutrality. To improve the efficiency of multicarbon products in Cu-based catalysts, optimizing the *CO adsorption and reducing the energy barrier for carbon-carbon (C-C) coupling are essential features. In this work, a strong local electric field is obtained by regulating the arrangement of Cu nanoneedle arrays (CuNNAs). CO2 reduction performance tests indicate that an ordered nanoneedle array reaches a 59% Faraday efficiency for multicarbon products (FEC2) at -1.2 V (vs RHE), compared to a FEC2 of 20% for a disordered nanoneedle array (CuNNs). As such, the very high and local electric fields achieved by an ordered Cu nanoneedle array leads to the accumulation of K+ ions, which benefit both *CO adsorption and C-C coupling. Our results contribute to the design of highly efficient catalysts for multicarbon products.

9.
Angew Chem Int Ed Engl ; 62(46): e202305651, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37612240

RESUMO

Tetrafluoromethane (CF4 ), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4 , but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27 Al and 71 Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV ), which readily dissociate water to form Ga-OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga-OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2 O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.

10.
Angew Chem Int Ed Engl ; 62(9): e202217026, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36577697

RESUMO

Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.

11.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37639659

RESUMO

Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

12.
Angew Chem Int Ed Engl ; 62(26): e202300873, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36883799

RESUMO

The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2 O is well known to affect the dissociation process, but H2 O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single-atom sites (IrRu DSACs) to tune the H2 O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010  N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2 O show that the M-H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction.


Assuntos
Eletricidade , Hidrogênio , Adsorção , Cinética , Água
13.
J Am Chem Soc ; 144(32): 14505-14516, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920726

RESUMO

Electrosynthesis of hydrogen peroxide (H2O2) through oxygen reduction reaction (ORR) is an environment-friendly and sustainable route for obtaining a fundamental product in the chemical industry. Co-N4 single-atom catalysts (SAC) have sparkled attention for being highly active in both 2e- ORR, leading to H2O2 and 4e- ORR, in which H2O is the main product. However, there is still a lack of fundamental insights into the structure-function relationship between CoN4 and the ORR mechanism over this family of catalysts. Here, by combining theoretical simulation and experiments, we unveil that pyrrole-type CoN4 (Co-N SACDp) is mainly responsible for the 2e- ORR, while pyridine-type CoN4 catalyzes the 4e- ORR. Indeed, Co-N SACDp exhibits a remarkable H2O2 selectivity of 94% and a superb H2O2 yield of 2032 mg for 90 h in a flow cell, outperforming most reported catalysts in acid media. Theoretical analysis and experimental investigations confirm that Co-N SACDp─with weakening O2/HOO* interaction─boosts the H2O2 production.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Catálise
14.
J Am Chem Soc ; 144(7): 3039-3049, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35112839

RESUMO

Electrochemical CO2 reduction is a promising way to mitigate CO2 emissions and close the anthropogenic carbon cycle. Among products from CO2RR, multicarbon chemicals, such as ethylene and ethanol with high energy density, are more valuable. However, the selectivity and reaction rate of C2 production are unsatisfactory due to the sluggish thermodynamics and kinetics of C-C coupling. The electric field and thermal field have been studied and utilized to promote catalytic reactions, as they can regulate the thermodynamic and kinetic barriers of reactions. Either raising the potential or heating the electrolyte can enhance C-C coupling, but these come at the cost of increasing side reactions, such as the hydrogen evolution reaction. Here, we present a generic strategy to enhance the local electric field and temperature simultaneously and dramatically improve the electric-thermal synergy desired in electrocatalysis. A conformal coating of ∼5 nm of polytetrafluoroethylene significantly improves the catalytic ability of copper nanoneedles (∼7-fold electric field and ∼40 K temperature enhancement at the tips compared with bare copper nanoneedles experimentally), resulting in an improved C2 Faradaic efficiency of over 86% at a partial current density of more than 250 mA cm-2 and a record-high C2 turnover frequency of 11.5 ± 0.3 s-1 Cu site-1. Combined with its low cost and scalability, the electric-thermal strategy for a state-of-the-art catalyst not only offers new insight into improving activity and selectivity of value-added C2 products as we demonstrated but also inspires advances in efficiency and/or selectivity of other valuable electro-/photocatalysis such as hydrogen evolution, nitrogen reduction, and hydrogen peroxide electrosynthesis.

15.
Angew Chem Int Ed Engl ; 61(32): e202206233, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674117

RESUMO

Heteroatom-doping in metal-nitrogen-carbon single-atom catalysts (SACs) is considered a powerful strategy to promote the electrocatalytic CO2 reduction reaction (CO2 RR), but the origin of enhanced catalytic activity is still elusive. Here, we disclose that sulfur doping induces an obvious proton-feeding effect for CO2 RR. The model SAC catalyst with sulfur doping in the second-shell of FeN4 (Fe1 -NSC) was verified by X-ray absorption spectroscopy and aberration-corrected scanning transmission electron microscopy. Fe1 -NSC exhibits superior CO2 RR performance compared to sulfur-free FeN4 and most reported Fe-based SACs, with a maximum CO Faradaic efficiency of 98.6 % and turnover frequency of 1197 h-1 . Kinetic analysis and in situ characterizations confirm that sulfur doping accelerates H2 O activation and feeds sufficient protons for promoting CO2 conversion to *COOH, which is also corroborated by the theoretical results. This work deepens the understanding of the CO2 RR mechanism based on SAC catalysts.

16.
Angew Chem Int Ed Engl ; 61(4): e202113664, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34822728

RESUMO

Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4 d z 2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4 d z 2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4 d z 2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.

17.
Angew Chem Int Ed Engl ; 61(44): e202212640, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36074055

RESUMO

Carbon dioxide electroreduction (CO2 RR) is a sustainable way of producing carbon-neutral fuels. Product selectivity in CO2 RR is regulated by the adsorption energy of reaction-intermediates. Here, we employ differential phase contrast-scanning transmission electron microscopy (DPC-STEM) to demonstrate that Sn heteroatoms on a Ag catalyst generate very strong and atomically localized electric fields. In situ attenuated total reflection infrared spectroscopy (ATR-IR) results verified that the localized electric field enhances the adsorption of *COOH, thus favoring the production of CO during CO2 RR. The Ag/Sn catalyst exhibits an approximately 100 % CO selectivity at a very wide range of potentials (from -0.5 to -1.1 V, versus reversible hydrogen electrode), and with a remarkably high energy efficiency (EE) of 76.1 %.

18.
Angew Chem Int Ed Engl ; 60(30): 16607-16614, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33982396

RESUMO

Electrochemical production of hydrogen peroxide (H2 O2 ) through two-electron (2 e- ) oxygen reduction reaction (ORR) is an on-site and clean route. Oxygen-doped carbon materials with high ORR activity and H2 O2 selectivity have been considered as the promising catalysts, however, there is still a lack of direct experimental evidence to identify true active sites at the complex carbon surface. Herein, we propose a chemical titration strategy to decipher the oxygen-doped carbon nanosheet (OCNS900 ) catalyst for 2 e- ORR. The OCNS900 exhibits outstanding 2 e- ORR performances with onset potential of 0.825 V (vs. RHE), mass activity of 14.5 A g-1 at 0.75 V (vs. RHE) and H2 O2 production rate of 770 mmol g-1 h-1 in flow cell, surpassing most reported carbon catalysts. Through selective chemical titration of C=O, C-OH, and COOH groups, we found that C=O species contributed to the most electrocatalytic activity and were the most active sites for 2 e- ORR, which were corroborated by theoretical calculations.

19.
Angew Chem Int Ed Engl ; 60(48): 25241-25245, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550636

RESUMO

Atomically dispersed transition metal sites have been extensively studied for CO2 electroreduction reaction (CO2 RR) to CO due to their robust CO2 activation ability. However, the strong hybridization between directionally localized d orbits and CO vastly limits CO desorption and thus the activities of atomically dispersed transition metal sites. In contrast, s-block metal sites possess nondirectionally delocalized 3s orbits and hence weak CO adsorption ability, providing a promising way to solve the suffered CO desorption issue. Herein, we constructed atomically dispersed magnesium atoms embedded in graphitic carbon nitride (Mg-C3 N4 ) through a facile heat treatment for CO2 RR. Theoretical calculations show that the CO desorption on Mg sites is easier than that on Fe and Co sites. This theoretical prediction is demonstrated by experimental CO temperature program desorption and in situ attenuated total reflection infrared spectroscopy. As a result, Mg-C3 N4 exhibits a high turnover frequency of ≈18 000 per hour in H-cell and a large current density of -300 mA cm-2 in flow cell, under a high CO Faradaic efficiency ≥90 % in KHCO3 electrolyte. This work sheds a new light on s-block metal sites for efficient CO2 RR to CO.

20.
Sensors (Basel) ; 19(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654544

RESUMO

A binocular vision system is a common perception component of an intelligent vehicle. Benefiting from the biomimetic structure, the system is simple and effective. Which are extremely snesitive on external factors, especially missing vision signals. In this paper, a virtual view-generation algorithm based on generative adversarial networks (GAN) is proposed to enhance the robustness of binocular vision systems. The proposed model consists of two parts: generative network and discriminator network. To improve the quality of a virtual view, a generative network structure based on 3D convolutional neural networks (3D-CNN) and attentive mechanisms is introduced to extract the time-series features from image sequences. To avoid gradient vanish during training, the dense block structure is utilized to improve the discriminator network. Meanwhile, three kinds of image features, including image edge, depth map and optical flow are extracted to constrain the supervised training of model. The final results on KITTI and Cityscapes datasets demonstrate that our algorithm outperforms conventional methods, and the missing vision signal can be replaced by a generated virtual view.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA