Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
World J Microbiol Biotechnol ; 39(2): 54, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36565394

RESUMO

Phosphorus (P) is one of the essential elements that are necessary for plant development and growth. However, the availability of soluble forms of P for plants in the soils is limited, because a large proportion of it is bound to soil constituents. Thus, the concentration of P available to plants at any time is very low and, moreover, its availability depends on the soil pH. As a solution, phosphate-solubilizing microorganisms (PSMs) are employed that render inorganic P available to plants in soluble form. Thus far, research into PSMs has been insufficient, and only few such organisms have been considered for exploitation as microbial fertilizer strains. The characteristics of plant growth promotion with the plant-PSMs coculture system remain to be elucidated. In the current study, we report on the isolate Rhodosporidium paludigenum JYC100 that exhibits good performance for solubilizing calcium phosphate. We found that it can be regulated by the amount of soluble phosphate. Furthermore, R. paludigenum JYC100 promotes plant growth under specific conditions (P deficiency, but with insoluble phosphate) in different media and soil pots. In contrast, the yeast Aureobasidium pullulans JYC104 exhibited weak phosphate-solubilizing capacities and no plant growth-promoting ability. Compared to control plants, the biomass, shoot height, and cellular inorganic P content of plants increased in plants cocultivated with R. paludigenum JYC100. In addition, histochemical GUS and qRT-PCR assays of phosphate starvation-induced (PSI) genes showed that the transcript levels of these PSI genes are decreased in the plants cocultured with R. paludigenum JYC100. These findings reflect the unique ability of R. paludigenum JYC100 to convert insoluble P compounds to plant-available P, thereby leading to growth promotion. Our study results highlight the use of yeasts as potential substitutes for inorganic phosphate fertilizers to meet the P demands of plants, which may eventually improve yields in sustainable agricultures.


Assuntos
Produtos Biológicos , Fosfatos , Fosfatos/metabolismo , Desenvolvimento Vegetal , Leveduras/metabolismo , Solo , Plantas/metabolismo , Microbiologia do Solo
2.
Plant Cell Physiol ; 60(5): 1120-1135, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785195

RESUMO

DNA methylation is a chromatin mark that has a crucial role in regulating gene expression. The chromomethylase (CMT) protein family is a plant-specific DNA methyltransferase that mediates growth and development. However, the roles of CMT3 in autophagy remain to be elucidated. Here, we identified the potential targets of CMT3 in Nicotiana benthamiana (NbCMT3) during developmental programs. Virus-induced gene silencing of NbCMT3/3-2 in N. benthamiana had pleiotropic effects on plant morphology, which indicates its indispensible role in development. Genome-wide transcriptome analysis of NbCMT3/3-2-silenced plants revealed interference with genes related to autophagy and ubiquitination. The expression of NbBeclin 1 and NbHRD1B was higher in NbCMT3/3-2-silenced than control plants. The formation of autophagosomes and starch degradation was disrupted in NbCMT3/3-2-silenced plants, which implies a perturbed autophagic processes. We further generated transgenic N. benthamiana plants carrying a chimeric promoter-reporter construct linking the NbBeclin 1 promoter region and ß-glucuronidase (GUS) reporter (pNbBeclin::GUS). NbBeclin 1 promoter activity was significantly enhanced in NbCMT3/3-2-silenced plants. Thus, NbCMT3/3-2 silencing had pleiotropic effects on development by interfering with NbBeclin 1 expression and autophagy-related processes.


Assuntos
Autofagia/fisiologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/fisiologia , Inativação Gênica/fisiologia , Proteínas de Plantas/genética
3.
BMC Plant Biol ; 19(1): 3, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606114

RESUMO

BACKGROUND: Head formation of broccoli (Brassica oleracea var. italica) is greatly reduced under high temperature (22 °C and 27 °C). Broccoli inbred lines that are capable of producing heads at high temperatures in summer are varieties that are unique to Taiwan. However, knowledge of the early-activated pathways of broccoli head formation under high temperature is limited. RESULTS: We compared heat-tolerant (HT) and heat-sensitive (HS) transcriptome of broccoli under different temperatures. Weighted gene correlation network analysis (WGCNA) revealed that genes involved in calcium signaling pathways, mitogen-activated protein kinase (MAPK) cascades, leucine-rich repeat receptor-like kinases (LRR-RLKs), and genes coding for heat-shock proteins and reactive oxygen species homeostasis shared a similar expression pattern to BoFLC1, which was highly expressed at high temperature (27 °C). Of note, these genes were less expressed in HT than HS broccoli at 22 °C. Co-expression analysis identified a model for LRR-RLKs in survival-reproduction tradeoffs by modulating MAPK- versus phytohormones-signaling during head formation. The difference in head-forming ability in response to heat stress between HT and HS broccoli may result from their differential transcriptome profiles of LRR-RLK genes. High temperature induced JA- as well as suppressed auxin- and cytokinin-related pathways may facilitate a balancing act to ensure fitness at 27 °C. BoFLC1 was less expressed in HT than HS at 22 °C, whereas other FLC homologues were not. Promoter analysis of BoFLC1 showed fewer AT dinucleotide repeats in HT broccoli. These results provide insight into the early activation of stress- or development-related pathways during head formation in broccoli. The identification of the BoFLC1 DNA biomarker may facilitate breeding of HT broccoli. CONCLUSIONS: In this study, HT and HS broccoli genotypes were used to determine the effect of temperature on head formation by transcriptome profiling. On the basis of the expression pattern of high temperature-associated signaling genes, the HS transcriptome may be involved in stress defense instead of transition to the reproductive phase in response to heat stress. Transcriptome profiling of HT and HS broccoli helps in understanding the molecular mechanisms underlying head-forming capacity and in promoting functional marker-assisted breeding.


Assuntos
Brassica/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transcriptoma , Brassica/genética , Brassica/metabolismo , Brassica/fisiologia , Flores/metabolismo , Flores/fisiologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico , Meristema/metabolismo , Meristema/fisiologia , Temperatura , Termotolerância , Transcriptoma/genética
4.
Sensors (Basel) ; 19(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717213

RESUMO

The solubilized form of aluminum, Al3+, is present under acid soil conditions and toxic to both animals and plants. Detecting and quantifying Al3+ is vital for both chemistry and biology. A new Schiff-based fluorescent turn-on sensor (probe L) for the selective detection of the Al3+ ion was synthesized by coupling 2-hydroxy-1-naphthaldehyde and 2-aminoisoindoline-1,3-dione, and the structure was characterized by nuclear magnetic resonance spectra. The probe L exhibited an excellent selective and sensitive response to the Al3+ ion over other metal ions in DMSO-H2O (1:9 v/v). Fluorescence quantification revealed that probe L was promising for the detection and accumulation of Al3+. Treating rice seedlings with Al3+ at 25⁻200 µM inhibited their growth. Al3+ treatment produced reactive oxygen species in rice roots. Practical applications of the fluorescent probe for the quantification of Al3+ in water samples and rice seedlings are demonstrated. Detecting the Al3+ ion with the probe L is easy and a potential alternative to existing analytical methods. The method can be used for detecting the Al3+ content of aqueous solution and plant systems. The novel fluorescent probe L has good potential for monitoring Al3+ content in the environment and biological systems.


Assuntos
Alumínio/química , Corantes Fluorescentes/química , Íons/química , Oryza/química , Raízes de Plantas/química , Água/química , Fluorescência , Limite de Detecção , Espectroscopia de Ressonância Magnética/métodos , Espécies Reativas de Oxigênio/química , Espectrometria de Fluorescência/métodos
5.
Physiol Plant ; 161(4): 515-531, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28786123

RESUMO

Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus-encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro-Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2-green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2-GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)-C2 displayed chlorotic lesions and stunted growth. PVX-C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host-defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3-2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3-2 gene and pNbCMT3-2::GUS (ß-glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Geminiviridae/patogenicidade , Nicotiana/metabolismo , Nicotiana/virologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Proteínas Virais/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Virais/genética
6.
BMC Plant Biol ; 16: 15, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757721

RESUMO

BACKGROUND: Host RNA-dependent RNA polymerases (RDRs) 1 and 6 contribute to antiviral RNA silencing in plants. RDR6 is constitutively expressed and was previously shown to limit invasion of Nicotiana benthamiana meristem tissue by potato virus X and thereby inhibit disease development. RDR1 is inducible by salicylic acid (SA) and several other phytohormones. But although it contributes to basal resistance to tobacco mosaic virus (TMV) it is dispensable for SA-induced resistance in inoculated leaves. The laboratory accession of N. benthamiana is a natural rdr1 mutant and highly susceptible to TMV. However, TMV-induced symptoms are ameliorated in transgenic plants expressing Medicago truncatula RDR1. RESULTS: In MtRDR1-transgenic N. benthamiana plants the spread of TMV expressing the green fluorescent protein (TMV.GFP) into upper, non-inoculated, leaves was not inhibited. However, in these plants exclusion of TMV.GFP from the apical meristem and adjacent stem tissue was greater than in control plants and this exclusion effect was enhanced by SA. TMV normally kills N. benthamiana plants but although MtRDR1-transgenic plants initially displayed virus-induced necrosis they subsequently recovered. Recovery from disease was markedly enhanced by SA treatment in MtRDR1-transgenic plants whereas in control plants SA delayed but did not prevent systemic necrosis and death. Following SA treatment of MtRDR1-transgenic plants, extractable RDR enzyme activity was increased and Western blot analysis of RDR extracts revealed a band cross-reacting with an antibody raised against MtRDR1. Expression of MtRDR1 in the transgenic N. benthamiana plants was driven by a constitutive 35S promoter derived from cauliflower mosaic virus, confirmed to be non-responsive to SA. This suggests that the effects of SA on MtRDR1 are exerted at a post-transcriptional level. CONCLUSIONS: MtRDR1 inhibits severe symptom development by limiting spread of virus into the growing tips of infected plants. Thus, RDR1 may act in a similar fashion to RDR6. MtRDR1 and SA acted additively to further promote recovery from disease symptoms in MtRDR1-transgenic plants. Thus it is possible that SA promotes MtRDR1 activity and/or stability through post-transcriptional effects.


Assuntos
Medicago truncatula/enzimologia , Nicotiana/virologia , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA/biossíntese , Ácido Salicílico/farmacologia , Vírus do Mosaico do Tabaco/fisiologia , Indução Enzimática , Expressão Gênica , Medicago truncatula/genética , Meristema/virologia , Plantas Geneticamente Modificadas , RNA Polimerase Dependente de RNA/metabolismo , Nicotiana/genética , Vírus do Mosaico do Tabaco/efeitos dos fármacos
7.
BMC Genomics ; 16: 1026, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625945

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. METHODS: In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. RESULTS: By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. CONCLUSIONS: This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.


Assuntos
Brassica/genética , MicroRNAs/genética , Característica Quantitativa Herdável , RNA de Plantas/genética , Estresse Fisiológico/genética , Temperatura , Sequência de Bases , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Genótipo , Temperatura Alta , Endogamia , MicroRNAs/química , Conformação de Ácido Nucleico , Fenótipo , Interferência de RNA , RNA de Plantas/química , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma
8.
Plant Cell Physiol ; 56(6): 1124-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25745030

RESUMO

The chromomethylase (CMT) protein family is unique to plants and controls non-CpG methylation. Here, we investigated the developmental expression of CMT3-2 in Nicotiana benthamiana (NbCMT3-2) and its significance by analyzing plants with silenced NbCMT3-2 and leaf tissues transiently expressing the N-terminal polypeptide. Alignment of the NbCMT3-2 amino acid sequence with that of other plant CMT3s showed a specific N-terminal extension required for nuclear localization. Transient expression of the N-terminal polypeptide in N. benthamiana resulted in chlorotic lesions. NbCMT3-2 was expressed mainly in proliferating tissues such as the shoot apex and developing leaves. We generated transgenic N. benthamiana harboring a fusion reporter construct linking the NbCMT3-2 promoter region and the ß-glucuronidase (GUS) reporter (pNbCMT3-2::GUS) to analyze the tissue-specific expression of NbCMT3-2. NbCMT3-2 was expressed in the shoot and root apical meristem and leaf primordia in young seedlings and highly expressed in developing leaves and ovary as well as lateral buds in mature plants. Virus-induced gene silencing used to knock down the expression of NbCMT3 or NbCMT3-2 or both led to partial loss of genomic DNA methylation. Plants with suppressed NbCMT3 expression grew and developed normally, whereas leaves with NbCMT3-2 knockdown showed mild curling as compared with controls. Silencing NbCMT3/3-2 severely interfered with leaf development and directly or indirectly affected the expression of genes involved in jasmonate homeostasis. The differential roles of NbCMT3 and NbCMT3-2 were investigated and compared. We reveal the expression patterns of NbCMT3-2 in proliferating tissues. NbCMT3-2 may play an essential role in leaf development by modulating jasmonate pathways.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Nicotiana/enzimologia , Nicotiana/genética , Especificidade de Órgãos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Clonagem Molecular , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Complementar/genética , Flores/genética , Flores/crescimento & desenvolvimento , Inativação Gênica , Genes de Plantas , Glucuronidase/metabolismo , Dados de Sequência Molecular , Organogênese/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transporte Proteico , Alinhamento de Sequência , Frações Subcelulares/metabolismo , Nicotiana/crescimento & desenvolvimento
9.
Plant Mol Biol ; 86(1-2): 157-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056418

RESUMO

Cr(VI) is the most toxic valency form of Cr, but its toxicity targets and the cellular systems contributing to acquisition of tolerance remain to be resolved at the molecular level in plants. We used microarray assay to analyze the transcriptomic profiles of rice roots in response to Cr(VI) stress. Gene ontology analysis revealed that the 2,688 Cr-responsive genes were involved in binding activity, metabolic process, biological regulation, cellular process and catalytic activity. More transcripts were responsive to Cr(VI) during long-term exposure (24 h, 2,097 genes), than short-term exposure (1- and 3-h results pooled, 1,181 genes). Long-term Cr(VI)-regulated genes are involved in cytokinin signaling, the ubiquitin-proteasome system pathway, DNA repair and Cu transportation. The expression of AS2 transcription factors was specifically modulated by long-term Cr(VI) stress. The protein kinases receptor-like cytoplasmic kinase and receptor-like kinase in flowers 3 were significantly upregulated with only short-term Cr(VI) exposure. In addition, 4 mitogen-activated protein kinase kinase kinases, 1 mitogen-activated protein kinase (MAPK) and 1 calcium-dependent protein kinase (CDPK) were upregulated with short-term Cr(VI) treatment. Expression of reactive oxygen species and calcium and activity of MAPKs and CDPK-like kinases were induced with increasing Cr(VI) concentration. These results may provide new insights into understanding the mechanisms of Cr toxicity and tolerance during different stages in rice roots.


Assuntos
Cromo/toxicidade , Oryza/genética , Estresse Fisiológico , Reparo do DNA , Perfilação da Expressão Gênica , Oryza/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Transdução de Sinais , Fatores de Tempo
10.
BMC Plant Biol ; 14: 94, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24734953

RESUMO

BACKGROUND: Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. RESULTS: The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. CONCLUSIONS: Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arsênio/toxicidade , Perfilação da Expressão Gênica , Genes de Plantas , Transdução de Sinais/genética , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Ecótipo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Estudos de Associação Genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
11.
Physiol Plant ; 150(1): 119-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23683172

RESUMO

DNA methylation is essential for normal developmental processes and genome stability. DNA methyltransferases are key enzymes catalyzing DNA methylation. Chromomethylase (CMT) genes are specific to the plant kingdom and encode chromodomain-containing methyltransferases. However, the function of CMT genes in plants remains elusive. In this study, we isolated and characterized a CMT gene from Nicotiana benthamiana, designated NbCMT3. Alignment of the NbCMT3 amino acid sequence with other plant CMT3s showed conservation of bromo-adjacent-homology and methyltransferase catalytic domains. We investigated the expression patterns of NbCMT3 and its function in developmental programs. NbCMT3 was expressed predominately in proliferating tissues such as apical shoots and young leaves. NbCMT3 protein showed a nuclear location, which could be related to its putative cellular functions. Knocking down NbCMT3 expression by virus-induced gene silencing revealed its vital role(s) in leaf morphogenesis. The formation of palisade cells was defective in NbCMT3-silenced plants as compared with controls. NbCMT3 has a role in developmental programs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Nicotiana/enzimologia , Sequência de Aminoácidos , DNA (Citosina-5-)-Metiltransferases/isolamento & purificação , Metilação de DNA , Inativação Gênica , Dados de Sequência Molecular , Organogênese Vegetal , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Nicotiana/crescimento & desenvolvimento
12.
Physiol Plant ; 150(2): 205-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24033343

RESUMO

Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants.


Assuntos
Cromo/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Oryza/efeitos dos fármacos , Oryza/genética , Transdução de Sinais/genética , Bioensaio , Brefeldina A/farmacologia , Cálcio/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Inativação Gênica/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/virologia
13.
Folia Microbiol (Praha) ; 69(4): 697-712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937405

RESUMO

Phosphate-solubilising fungi (PSF) are beneficial microorganisms that play a pivotal role in plant growth by increasing the availability of phosphorus (P) in soil. Although phosphorus is an essential nutrient for plants, it often becomes inaccessible as it binds into insoluble forms. PSF effectively facilitate the release of this bound phosphorus through diverse mechanisms. Numerous fungal species demonstrate the ability to solubilise various types of phosphate compounds. Among the commonly researched PSF are Penicillium, Aspergillus, Rhizopus, Fusarium, Trichoderma, and Sclerotium. Moreover, yeasts such as Saccharomyces cerevisiae can potentially be leveraged as PSF. PSF secrete organic acids that chelate phosphate ions, thereby increasing their solubility in the soil. Moreover, PSF contribute to the decomposition of organic phosphorus compounds in soil by employing enzymes such as phosphatases, phytases, and phosphonatases. Furthermore, PSF can interact with other soil microorganisms, including nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AM-fungi), fostering synergistic effects that further enhance plant growth and nutrient absorption. The utilisation of PSF as biofertilisers offers numerous advantages over chemical fertilisers, including environmental friendliness, cost-effectiveness, and enhanced fertiliser utilisation efficiency. Furthermore, PSF can prove beneficial in challenging environments characterised by high phosphate sorption. Hence, this review serves as an updated study aimed at broadening the understanding of PSF and its potential applications in P solubilisation. This review also focuses on the diversity of PSF, the mechanisms underlying solubilisation, ecological roles of PSF in soil microbiome, and the benefits of sustainable agriculture. By delving into the ecological roles of PSF and their potential as biofertilisers, this study contributes to a deeper understanding of sustainable agriculture practices and addresses challenges in phosphate-scarce environments.


Assuntos
Agricultura , Fertilizantes , Fungos , Fosfatos , Desenvolvimento Vegetal , Microbiologia do Solo , Fosfatos/metabolismo , Fungos/metabolismo , Fungos/crescimento & desenvolvimento , Agricultura/métodos , Fertilizantes/análise , Solo/química , Micorrizas/metabolismo , Micorrizas/fisiologia , Fósforo/metabolismo
14.
BMC Genomics ; 14: 351, 2013 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23705659

RESUMO

BACKGROUND: Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to ferulic acid, an autotoxin from rice straw. RESULTS: Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes). Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIII and receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-finger protein expressed in inflorescence meristem transcription factors. CONCLUSIONS: The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIII and SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This comprehensive description of gene expression information could greatly facilitate our understanding of the mechanisms of autotoxicity in plants.


Assuntos
Ácidos Cumáricos/farmacologia , Oryza/efeitos dos fármacos , Oryza/genética , Raízes de Plantas/efeitos dos fármacos , Transcriptoma , Cálcio/metabolismo , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Anotação de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
15.
Plant Mol Biol ; 81(4-5): 507-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23400832

RESUMO

The phytotoxic effects of copper (Cu) and cadmium (Cd) on plant growth are well documented. However, Cu and Cd toxicity targets and the cellular systems contributing to acquisition of tolerance are not fully understood at the molecular level. We aimed to identify genes and pathways that discriminate the actions of Cu and Cd in rice roots (Oryza sativa L. cv. TN67). The transcripts of 1,450 and 1,172 genes were regulated after Cu and Cd treatments, respectively. We identified 882 genes specifically respond to Cu treatment, and 604 unique genes as Cd-responsive by comparison of expression profiles of these two regulated gene groups. Gene ontology analysis for 538 genes involved in primary metabolism, oxidation reduction and response to stimulus was changed in response to both metals. In the individual aspect, Cu specifically altered levels of genes involved in vesicle trafficking transport, fatty acid metabolism and cellular component biogenesis. Cd-regulated genes related to unfolded protein binding and sulfate assimilation. To further characterize the functions of vesicle trafficking transport under Cu stress, interference of excytosis in root tissues was conducted by inhibitors and silencing of Exo70 genes. It was demonstrated that vesicle-trafficking is required for mediation of Cu-induced reactive oxygen species (ROS) production in root tissues. These results may provide new insights into understanding the molecular basis of the early metal stress response in plants.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Oryza/efeitos dos fármacos , Oryza/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas/genética , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Vírus de Plantas/efeitos dos fármacos , Vírus de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/virologia , Transcriptoma/efeitos dos fármacos , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo
16.
RSC Adv ; 13(42): 29283-29290, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37809029

RESUMO

In this work, luminescent carbon dots with gardenia seeds as carbon precursors (GCDs) were synthesized using a one-step mild pyrolysis process and were then used as probes for imaging of bacterial (Escherichia coli). The GCDs showed a strong emission at 430 nm when excited at 370 nm. The relative fluorescence quantum yield of GCDs was found to be 1.13% in an aqueous medium. Rapid internalization of the GCDs by bacteria was confirmed by three colors (blue, green, and yellow) images that were obtained using confocal fluorescence microscopy. In addition, GCDs were noted to exhibit potent scavenging activities against DPPH˙, ˙OH, and ˙O2- free radicals. GCDs were also assayed as antioxidants in an oil sample by volumetric determination of the peroxide value. Thus, GCDs exhibited good antioxidant properties both in aqueous and oil media. In addition, a free fatty acid quantification kit in the presence of GCDs showed enhanced fluorescence detection of palmitic acid with a remarkably good limit of detection of 0.08 µM, which is lower than that in the absence of GCDs (0.76 µM). The proposed fluorescence method was then successfully used to determine the concentration of palmitic acid spiked in milk powder samples, with spiked recoveries of 82.6-109.6% and relative standard deviations of 0.9-4.6%.

17.
Plant Mol Biol ; 80(6): 587-608, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22987115

RESUMO

Arsenic (As) is considered the most common toxic metalloid, but its molecular mode of action is not well understood. We investigated whether arsenate [As(V)] can induce intracellular reactive oxygen species production and calcium oscillation in rice roots. To better understand the molecular basis of plant cell responses to As, we performed a large-scale analysis of the rice transcriptome during As(V) stress. As(V) induced genes involved in abiotic stress, detoxification pathways and secondary metabolic process. Genes involved in secondary cell wall biogenesis, cell cycle and oligopeptide transport were mainly downregulated. Genes encoding signalling components such as receptor-like cytoplasmic kinases protein kinase, APETALA2/ethylene response factor, heat shock factor, MYB and zinc-finger protein expressed in inflorescence meristem transcription factors were increased in expression. The expression of GARP-G2-like and C3H transcription factors was specifically modulated by As(V) stress. The predominant families of As(V)-regulated transporters belonged to the ATP-binding cassette superfamily and telurite-resistance/dicarboxylate transporters. Several factors involved in signaling, such as mitogen-activated protein kinase (MAPK), MAPK kinase kinase and calcium-dependent protein kinase (CDPK), were also upregulated. Moreover, As(V) markedly increased the activity of MAPKs and CDPK-like kinases, and CDPK and NADPH oxidases were involved in As-induced MAPK activation. Further characterization of these As(V)-responsive genes and signalling pathways may help better understand the mechanisms of metalloid uptake, tolerance and detoxification in plants.


Assuntos
Arseniatos/toxicidade , Oryza/efeitos dos fármacos , Oryza/genética , Arseniatos/farmacocinética , Sinalização do Cálcio/efeitos dos fármacos , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Genes de Plantas/efeitos dos fármacos , Inativação Metabólica/genética , Inativação Metabólica/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Oryza/metabolismo , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
18.
Plant Cell Physiol ; 53(8): 1457-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706032

RESUMO

Callus-forming capacity is enhanced with hypocotyl maturity in Arabidopsis. However, the genetic regulation of age-related gain in capacity for callus formation is unclear. We used a gene expression microarray assay to characterize the underlying mechanisms during callus formation in young and mature hypocotyl explants of Arabidopsis. As expected, genes involved in photosynthesis and cell wall thickening showed altered expression during hypocotyl maturation. In addition, genes involved in cytokinin perception were enriched in mature hypocotyl tissues. Phytohormone-induced callus formation in hypocotyl explants was accompanied by increased expression of genes mainly related to the cell cycle, histones and epigenetics. The induction level of these genes was higher in mature hypocotyl explants than young explants during callus formation. We identified a number of genes, including those with unknown function, potentially involved in age-related gain in callus formation. Our results provide insight into the effect of hypocotyl age on callus formation. Altered cytokinin signaling components, cell cycle regulation and epigenetics may work in concert to lead to gain of callus-forming capacity in hypocotyls with age.


Assuntos
Arabidopsis/fisiologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Divisão Celular/genética , Citocininas/genética , Citocininas/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hipocótilo/anatomia & histologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos
19.
Physiol Plant ; 145(3): 406-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22268629

RESUMO

Erwinia chrysanthemi is a devastating bacterial pathogen in Phalaenopsis amabilis and causes soft-rotting disease by secretion of cell wall-degrading enzymes. However, the molecular mechanisms underlying the interaction of P. amabilis with E. chrysanthemi remain elusive. In this study, early molecular events of the plant in response to the pathogen attack were investigated. The alteration in reactive oxygen species accumulation and peroxidase activity occurred at the site of infection. Subsequently, a systematic sequencing of expressed sequence tags (ESTs) using suppression subtractive hybridization (SSH) was performed to obtain the first global picture of the assembly of genes involved in the pathogenesis. The majority of the SSH clones showed a high identity with genes coding for proteins that have known roles in redox homeostasis, responses to pathogens and metabolism. A notable number of the SSH clones were those encoding WRKY, MYB and basic leucine zipper transcription factors, indicating the stimulation of intracellular signal transduction. An orchid gene encoding trans-2-enoyl-CoA reductase (ECR) was the most abundant transcripts in the EST library. ECR is an enzyme catalyzing the very long chain fatty acids (VLCFAs) biosynthesis, and the full-length cDNA of the ECR gene (PaECR1) was obtained. Functional analysis of PaECR1 was conducted by virus-induced gene silencing to knock down the gene expression in P. amabilis. The PaECR1-silenced plants were more susceptible to E. chrysanthemi infection, implying potential roles for VLCFAs in the pathogenesis. In summary, the pathogen-responsive gene expression profiles facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.


Assuntos
Dickeya chrysanthemi/patogenicidade , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno , Orchidaceae/microbiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Parede Celular/metabolismo , Parede Celular/microbiologia , Ativação Enzimática , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes/métodos , Inativação Gênica , Genes de Plantas , Homeostase , Dados de Sequência Molecular , Orchidaceae/genética , Orchidaceae/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Transdução de Sinais
20.
Plant Mol Biol ; 77(6): 591-607, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22065257

RESUMO

Juglone (5-hydroxy-1,4-naphthoquinone) is known allelochemical, but its molecular mode of action is not well understood. We found that juglone induced reactive oxygen species production and calcium accumulation. To gain more insight into these cellular responses, we performed large-scale analysis of the rice transcriptome during juglone stress. Exposure to juglone triggered changes in transcript levels of genes related to cell growth, cell wall formation, chemical detoxification, abiotic stress response and epigenesis. The most predominant transcription-factor families were AP2/ERF, HSF, NAC, C2H2, WRKY, MYB and GRAS. Gene expression profiling of juglone-treated rice roots revealed upregulated signaling and biosynthesis of abscisic acid and jasmonic acid and inactivation of gibberellic acid. In addition, juglone upregulated the expression of two calcium-dependent protein kinases (CDPKs), 6 mitogen-activated protein kinase (MAPK) genes and 1 MAPK gene and markedly increased the activities of a CDPK-like kinase and MAPKs. Further characterization of these juglone-responsive genes may be helpful for better understanding the mechanisms of allelochemical tolerance in plants.


Assuntos
Naftoquinonas/farmacologia , Oryza/efeitos dos fármacos , Oryza/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA