Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4215-4232, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38845149

RESUMO

Boron neutron capture therapy (BNCT) targets invasive, radioresistant cancers but requires a selective and high B-10 loading boron drug. This manuscript investigates boron-rich poly(ethylene glycol)-block-(poly(4-vinylphenyl boronate ester)) polymer micelles synthesized via atom transfer radical polymerization for their potential application in BNCT. Transmission electron microscopy (TEM) revealed spherical micelles with a uniform size of 43 ± 10 nm, ideal for drug delivery. Additionally, probe sonication proved effective in maintaining the micelles' size and morphology postlyophilization and reconstitution. In vitro studies with B16-F10 melanoma cells demonstrated a 38-fold increase in boron accumulation compared to the borophenylalanine drug for BNCT. In vivo studies in a B16-F10 tumor-bearing mouse model confirmed enhanced tumor selectivity and accumulation, with a tumor-to-blood (T/B) ratio of 2.5, surpassing BPA's T/B ratio of 1.8. As a result, mice treated with these micelles experienced a significant delay in tumor growth, highlighting their potential for BNCT and warranting further research.


Assuntos
Terapia por Captura de Nêutron de Boro , Micelas , Terapia por Captura de Nêutron de Boro/métodos , Animais , Camundongos , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Ácidos Borônicos/química , Linhagem Celular Tumoral , Polietilenoglicóis/química , Polímeros/química , Camundongos Endogâmicos C57BL , Ésteres/química , Ésteres/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia
2.
Biomater Res ; 28: 0040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933089

RESUMO

Malignant cancers, known for their pronounced heterogeneity, pose substantial challenges to monotherapeutic strategies and contribute to the risk of metastasis. Addressing this, our study explores the synergistic potential of combining boron neutron capture therapy (BNCT) with immune checkpoint blockade to enhance cancer treatment efficacy. We synthesized boron-rich block copolymer micelles as a novel boron drug for BNCT. Characterization was conducted using nuclear magnetic resonance, gel-permeation chromatography, transmission electron microscopy, and dynamic light scattering. These micelles, with an optimal size of 91.3 nm and a polydispersity index of 0.18, are suitable for drug delivery applications. In vitro assessments on B16-F10 melanoma cells showed a 13-fold increase in boron uptake with the micelles compared to borophenyl alanine (BPA), the conventional boron drug for BNCT. This resulted in a substantial increase in BNCT efficacy, reducing cell viability to 77% post-irradiation in micelle-treated cells, in contrast to 90% in BPA-treated cells. In vivo, melanoma-bearing mice treated with these micelles exhibited an 8-fold increase in boron accumulation in tumor tissues versus those treated with BPA, leading to prolonged tumor growth delay (5.4 days with micelles versus 3.3 days with BPA). Moreover, combining BNCT with anti-PD-L1 immunotherapy further extended the tumor growth delay to 6.6 days, and enhanced T-cell infiltration and activation at tumor sites, thereby indicating a boosted immune response. This combination demonstrates a promising approach by enhancing cytotoxic T-cell priming and mitigating the immunosuppressive effects of melanoma tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA