RESUMO
Inverted organic solar cells (OSCs) have garnered significant interest due to their remarkable stability. In this study, the efficiency and stability of inverted OSCs are enhanced via the in situ self-organization (SO) of an interfacial modification material Phen-NaDPO onto tin oxide (SnO2). During the device fabrication, Phen-NaDPO is spin-coated with the active materials all together on SnO2. Driven by the interactions with SnO2 and the thermodynamic forces due to its high surface energy and the convection flow, Phen-NaDPO spontaneously migrates to the SnO2 interface, resulting in the formation of an in situ modification layer on SnO2. This self-organization of Phen-NaDPO not only effectively reduces the work function of SnO2, but also enhances the ordered molecular stacking and manipulates the vertical morphology of the active layer, which suppress the surface trap-assisted recombination and minimize the charge extraction. As a result, the SO devices based on PM6:Y6 exhibit significantly improved photovoltaic performance with an enhanced power conversion efficiency of 17.62%. Moreover, the stability of the SO device is also improved. Furthermore, the SO ternary devices based on PM6:D18:L8-BO achieved an impressive PCE of 18.87%, standing as one of the highest values for single-junction inverted organic solar cells to date.
RESUMO
The simultaneous improvement of efficiency and stability of organic solar cells (OSCs) for commercialization remains a challenging task. Herein, we designed asymmetric acceptors DT-C8Cl and DT-C8BTz with functional haloalkyl chains, in which the halogen atoms could induce noncovalent interactions with heteroatoms like O, S, and Se, etc., thus leading to appropriately manipulated film morphology. Consequently, binary devices based on D18: DT-C8Cl achieved a champion power conversion efficiency (PCE) of 19.40 %. The higher PCE of D18: DT-C8Cl could be attributed to the enhanced π-π stacking, improved charge transport, and reduced recombination losses. In addition, the noncovalent interactions induced by haloalkyl chains could effectively suppress unfavorable morphology evolutions and thereby reduce trap density of states, leading to improved thermal and storage stability. Overall, our findings reveal that the rational design of asymmetric acceptors with functional haloalkyl chains is a novel and powerful strategy for simultaneously enhancing the efficiency and stability of OSCs.
RESUMO
Side chain engineering plays a vital role in exploring high-performance small molecule acceptors (SMAs) for organic solar cells (OSCs). In this work, we designed and synthesized a series of A-DA'D-A type SMAs by introducing different N-substituted alkyl and ester alkyl side chains on benzotriazole (BZ) central unit and aimed to investigate the effect of different ester substitution positions on photovoltaic performances. All the new SMAs with ester groups exhibit lower the lowest unoccupied molecular orbital (LUMO) energy levels and more blue-shifted absorption, but relatively higher absorption coefficients than alkyl chain counterpart. After blending with the donor PM6, the ester side chain-based devices demonstrate enhanced charge mobility, reduced amorphous intermixing domain size and long-lived charge transfer state compared to the alkyl chain counterpart, which are beneficial to achieve higher short-circuit current density (Jsc ) and fill factor (FF), simultaneously. Thereinto, the PM6 : BZ-E31 based device achieves a higher power conversion efficiency (PCE) of 18.33 %, which is the highest PCE among the OSCs based on the SMAs with BZ-core. Our work demonstrated the strategy of ester substituted side chain is a feasible and effective approach to develop more efficient SMAs for OSCs.
RESUMO
Inverted perovskite/organic tandem solar cells (P/O TSCs) suffer from poor long-term device stability due to halide segregation in organic-inorganic hybrid wide-band gap (WBG) perovskites, which hinders their practical deployment. Therefore, developing all-inorganic WBG perovskites for incorporation into P/O TSCs is a promising strategy because of their superior stability under continuous illumination. However, these inorganic WBG perovskites also face some critical issues, including rapid crystallization, phase instability, and large energy loss, etc. To tackle these issues, two multifunctional additives based on 9,10-anthraquinone-2-sulfonic acid (AQS) are developed to regulate the perovskite crystallization by mediating the intermediate phases and suppress the halide segregation through the redox-shuttle effect. By coupling with organic cations having the desirable functional groups and dipole moments, these additives can effectively passivate the defects and adjust the alignment of interface energy levels. Consequently, a record Voc approaching 1.3â V with high power conversion efficiency (PCE) of 18.59 % could be achieved in a 1.78â eV band gap single-junction inverted all-inorganic PSC. More importantly, the P/O TSC derived from this cell demonstrates a T90 lifetime of 1000â h under continuous operation, presenting the most stable P/O TSCs reported so far.
RESUMO
Dopant-free hole transport materials (HTMs) are ideal materials for highly efficient and stable n-i-p perovskite solar cells (PSCs), but most current design strategies for tailoring the molecular structures of HTMs are limited to single strategy. Herein, four HTMs based on dithienothiophenepyrrole (DTTP) core are devised through dual-strategy methods combining conjugate engineering and side chain engineering. DTTP-ThSO with ester alkyl chain that can form six-membered ring by the Sâ â â O noncovalent conformation lock with thiophene in the backbone shows good planarity, high-quality film, matching energy level and high hole mobility, as well as strong defect passivation ability. Consequently, a remarkable power conversion efficiency (PCE) of 23.3 % with a nice long-term stability is achieved by dopant-free DTTP-ThSO-based PSCs, representing one of the highest values for un-doped organic HTMs based PSCs. Especially, the fill factor (FF) of 82.3 % is the highest value for dopant-free small molecular HTMs-based n-i-p PSCs to date. Moreover, DTTP-ThSO-based devices have achieved an excellent PCE of 20.9 % in large-area (1.01â cm2) devices. This work clearly elucidates the structure-performance relationships of HTMs and offers a practical dual-strategy approach to designing dopant-free HTMs for high-performance PSCs.
RESUMO
The migration of mobile ionic halide vacancies is usually considered detrimental to the performance and stability of perovskite optoelectronic devices. Taking advantage of this intrinsic feature, we fabricated a CsPbI3 perovskite quantum dot (PQD)-based write-once-read-many-times (WORM) memory device with a simple sandwich structure that demonstrates intrinsic ternary states with a high ON/OFF ratio of 103:102:1 and a long retention time of 104 s. Through electrochemical impedance spectroscopy, we proved that the resistive switching is achieved by the migration of mobile iodine vacancies (VIs) under an electric field to form conductive filaments (CFs). Using in situ conductive atomic force microscopy, we further revealed that the multilevel property arises from the different activation energies for VIs to migrate at grain boundaries and grain interiors, resulting in two distinct pathways for CFs to grow. Our work highlights the potential of CsPbI3 PQD-based WORM devices, showcasing intrinsic multilevel properties achieved in a simple device structure by rationally controlling the drift of ionic defects.
RESUMO
As the rise of nonfullerene acceptors (NFA) has allowed lab-scale organic solar cells (OSC) to reach 20% efficiency, translating these devices into roll-to-roll compatible fabrication still poses many challenges for researchers. Among these are the use of green solvent solubility for large-scale manufacture, roll-to-roll compatible fabrication, and, not least, information on charge carrier dynamics in each upscaling step, to further understand the gap in performance. In this work, the reproducibility of champion devices using slot-die coating with 14% power conversion efficiency (PCE) is demonstrated, under the condition that the optimal thickness is maintained. It is further shown that for the donor:acceptor (D:A) blend PM6:Y12, the processing solvent has a more significant impact on charge carrier dynamics compared to the deposition technique. It is found that the devices processed with o-xylene feature a 40% decrease in the bimolecular recombination coefficient compared to those processed with CB, as well as a 70% increase in effective mobility. Finally, it is highlighted that blade-coating yields devices with similar carrier dynamics to slot-die coating, making it the optimal choice for lab-scale optimization with no significant loss in translation toward up-scale.
RESUMO
An organic photovoltaic bulk heterojunction comprises of a mixture of donor and acceptor materials, forming a semi-crystalline thin film with both crystalline and amorphous domains. Domain sizes critically impact the device performance; however, conventional X-ray scattering techniques cannot detect the contrast between donor and acceptor materials within the amorphous intermixing regions. In this study, we employ neutron scattering and targeted deuteration of acceptor materials to enhance the scattering contrast by nearly one order of magnitude. Remarkably, the PM6:deuterated Y6 system reveals a new length scale, indicating short-range aggregation of Y6 molecules in the amorphous intermixing regions. All-atom molecular dynamics simulations confirm that this short-range aggregation is an inherent morphological advantage of Y6 which effectively assists charge extraction and suppresses charge recombination as shown by capacitance spectroscopy. Our findings uncover the amorphous nanomorphology of organic photovoltaic thin films, providing crucial insights into the morphology-driven device performance.
RESUMO
The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.
RESUMO
Solution-processed high-performing ambipolar organic phototransistors (OPTs) can enable low-cost integrated circuits. Here, a heteroatom engineering approach to modify the electron affinity of a low band gap diketopyrrolopyrole (DPP) co-polymer, resulting in well-balanced charge transport, a more preferential edge-on orientation and higher crystallinity, is demonstrated. Changing the comonomer heteroatom from sulfur (benzothiadiazole (BT)) to oxygen (benzooxadiazole (BO)) leads to an increased electron affinity and introduces higher ambipolarity. Organic thin film transistors fabricated from the novel PDPP-BO exhibit charge carrier mobility of 0.6 and 0.3 cm2 Vsâ»1 for electrons and holes, respectively. Due to the high sensitivity of the PDPP-based material and the balanced transport in PDPP-BO, its application as an NIR detector in an OPT architecture is presented. By maintaining a high on/off ratio (9 × 104), ambipolar OPTs are shown with photoresponsivity of 69 and 99 A Wâ»1 and specific detectivity of 8 × 107 for the p-type operation and 4 × 109 Jones for the n-type regime. The high symmetric NIR-ambipolar OPTs are also evaluated as ambipolar photo-inverters, and show a 46% gain enhancement under illumination.
RESUMO
Due to their versatile applications, perovskite quantum dot (PQD)-based optoelectrical devices have garnered significant research attention. However, the fundamental packing behavior of PQDs in thin films and its impact on the device performance remain relatively unexplored. Drawing inspiration from theoretical models concerning packing density with size mixtures, this study presents an effective strategy, namely, binary-disperse mixing, aimed at enhancing the packing density of PQD films. Comprehensive grazing-incidence small-angle X-ray characterization suggested that the PQD film consists of three phases: two monosize phases and one binary mixing phase. The volume fraction and population of the binary-size phase can be tuned by mixing an appropriate amount of large and small PQDs. Furthermore, we performed multi-length-scale all-atom and coarse-grained molecular dynamics simulations to elucidate the distribution and conformation of organic surface ligands, highlighting their influence on PQD packing. Notably, the mixing of two PQDs of different sizes promotes closer face-to-face contact. The densely packed binary-disperse film exhibited largely suppressed trap-assisted recombination, much longer carrier lifetime, and thereby improved power conversion efficiency. Hence, this study provides fundamental understanding of the packing mechanism of perovskite quantum dots and highlights the significance of packing density for PQD-based solar cells.
RESUMO
Using a combinatory blending strategy is demonstrated as a promising path for designing efficient organic solar cells (OSCs) by boosting the short-circuit current density and fill factor. Herein, a high-performance ternary all-small molecule OSC (all-SMOSCs) using a narrow-bandgap alloy acceptor containing symmetric and asymmetric molecules (BTP-eC9 and SSe-NIC) and a wide-bandgap small molecule donor MPhS-C2 is reported. Introducing the synthesized SSe-NIC into the MPhS-C2:BTP-eC9 host system can broaden the absorption spectrum, modulate energy offsets, and optimize the molecular packing of the host materials. After systematically optimizing the weight ratio of MPhS-C2:BTP-eC9:SSe-NIC, a champion efficiency of 18.02% is achieved. Impressively, the ternary system not only delivered a broad composition tolerance with device efficiencies over 17% throughout the whole blend ratios, but also exhibited less non-geminate recombination and energy loss, and better-light-soaking stability than the corresponding binary systems. This work promotes the development of high-performance ternary all-SMOSCs and heralds their brighter application prospects.
RESUMO
With the advent of nonfullerene acceptors (NFAs), organic photovoltaic (OPV) devices are now achieving high enough power conversion efficiencies (PCEs) for commercialization. However, these high performances rely on active layers processed from petroleum-based and toxic solvents, which are undesirable for mass manufacturing. Here, we demonstrate the use of biorenewable 2-methyltetrahydrofuran (2MeTHF) and cyclopentyl methyl ether (CPME) solvents to process donor: NFA-based OPVs with no additional additives in the active layer. Furthermore, to reduce the overall carbon footprint of the manufacturing cycle of the OPVs, we use polymeric donors that require a few synthetic steps for their synthesis, namely, PTQ10 and FO6-T, which are blended with the Y-series NFA Y12. High performance was achieved using 2MeTHF as the processing solvent, reaching PCEs of 14.5% and 11.4% for PTQ10:Y12 and FO6-T:Y12 blends, respectively. This work demonstrates the potential of using biorenewable solvents without additives for the processing of OPV active layers, opening the door to large-scale and green manufacturing of organic solar cells.
RESUMO
The non-fullerene acceptors (NFAs) employed in state-of-art organic photovoltaics (OPVs) often exhibit strong quadrupole moments which can strongly impact on material energetics. Herein, we show that changing the orientation of Y6, a prototypical NFA, from face-on to more edge-on by using different processing solvents causes a significant energetic shift of up to 210 meV. The impact of this energetic shift on OPV performance is investigated in both bilayer and bulk-heterojunction (BHJ) devices with PM6 polymer donor. The device electronic bandgap and the rate of non-geminate recombination are found to depend on the Y6 orientation in both bilayer and BHJ devices, attributed to the quadrupole moment-induced band bending. Analogous energetic shifts are also observed in other common polymer/NFA blends, which correlates well with NFA quadrupole moments. This work demonstrates the key impact of NFA quadruple moments and molecular orientation on material energetics and thereby on the efficiency of high-performance OPVs.
RESUMO
Perinephric abscess commonly arises from rupture of an intrarenal abscess into the perinephric space. It rarely results from gastrointestinal pathology. We report two pediatric patients with retrocecal appendicitis that presented with perinephric abscess. A 3-year-old girl presented with high fever and right flank pain for more than 1 week. Ultrasonography showed a right perinephric fluid collection with normal renal parenchyma and collecting system. A perinephric abscess extending from a ruptured retrocecal appendix was diagnosed by abdominal computed tomographic (CT) scan. Her hospital course was complicated with empyema, peritonitis, and pericardial effusion. A 6-year-old girl had lower abdominal pain for 3 days and high fever on the day of admission. Ultrasonography showed a right perinephric abscess with a normal renal contour and a fecalith in the enlarged appendix in the right lower quadrant of the abdomen. Appendectomy and drainage of the perinephric abscess were performed in both cases. We suggest that a ruptured retrocecal appendix must be considered in cases of perinephric abscess, especially in patients with gas bubbles in the abscess and a normal urogenital appearance. Ultrasonography and abdominal CT scan are the preferred diagnostic tools. Prolonged antibiotics and drainage of the abscess are mandatory to decrease morbidity and mortality.