Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Plant Biotechnol J ; 22(1): 98-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688588

RESUMO

As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.


Assuntos
Cajanus , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Actinas/metabolismo , Cajanus/genética , Destrina/metabolismo , Tolerância ao Sal/genética , Fosforilação , Citoesqueleto de Actina/metabolismo
2.
Plant Biotechnol J ; 22(1): 131-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37703500

RESUMO

Glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to environmental stresses, but the function of GRP genes involved in salt stress and the underlying mechanism remain unclear. In this study, we identified BpGRP1 (glycine-rich RNA-binding protein), a Betula platyphylla gene that is induced under salt stress. The physiological and molecular responses to salt tolerance were investigated in both BpGRP1-overexpressing and suppressed conditions. BpGRF3 (growth-regulating factor 3) was identified as a regulatory factor upstream of BpGRP1. We demonstrated that overexpression of BpGRF3 significantly increased the salt tolerance of birch, whereas the grf3-1 mutant exhibited the opposite effect. Further analysis revealed that BpGRF3 and its interaction partner, BpSHMT, function upstream of BpGRP1. We demonstrated that BpmiR396c, as an upstream regulator of BpGRF3, could negatively regulate salt tolerance in birch. Furthermore, we uncovered evidence showing that the BpmiR396c/BpGRF3 regulatory module functions in mediating the salt response by regulating the associated physiological pathways. Our results indicate that BpmiR396c regulates the expression of BpGRF3, which plays a role in salt tolerance by targeting BpGRP1.


Assuntos
Betula , Tolerância ao Sal , Tolerância ao Sal/genética , Betula/genética , Betula/metabolismo , Estresse Fisiológico/genética , Glicina , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/metabolismo
3.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776153

RESUMO

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Assuntos
Cajanus , RNA Longo não Codificante , Ácido Cítrico/metabolismo , Cajanus/genética , Alumínio/toxicidade , Alumínio/metabolismo , Citrato (si)-Sintase , Citratos/metabolismo
4.
Crit Rev Biotechnol ; 44(1): 78-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592988

RESUMO

Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.


Assuntos
Endófitos , Fungos , Endófitos/metabolismo , Fungos/fisiologia , Plantas/metabolismo , Simbiose , Desenvolvimento Vegetal
5.
J Sep Sci ; 47(4): e2300811, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403440

RESUMO

In this work, surface molecularly imprinted polymers based on magnetic multi-walled carbon nanotubes were prepared for the specific recognition and adsorption of resveratrol. The functionalization of magnetic multi-walled carbon nanotubes and the synthesis process of surface molecularly imprinted polymers were optimized. Characterizations were performed to demonstrate the successful synthesis of the imprinted materials. The imprinted materials showed satisfactory adsorption capacity of resveratrol (45.73 ± 1.72 mg/g) and excellent selectivity (imprinting factor 2.89 ± 0.15). In addition, the imprinted materials were used as adsorbents in molecularly imprinted solid-phase extraction for the purification of resveratrol from crude extracts of some food and medicinal resources, achieving recoveries of 93.69%-95.53% with high purities of 88.37%-92.33%. Moreover, the purified products exhibited extremely strong free radical scavenging activity compared with crude extracts. Overall, this work provided a promising approach for the highly selective purification of resveratrol from natural resources, which would contribute to the application of this valuable compound in the food/nutraceutical fields.


Assuntos
Fallopia japonica , Impressão Molecular , Nanotubos de Carbono , Vitis , Resveratrol , Polímeros Molecularmente Impressos , Arachis , Polímeros , Adsorção , Misturas Complexas , Fenômenos Magnéticos , Extração em Fase Sólida
6.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999936

RESUMO

The surface functionalization of polymer-mediated drug/gene delivery holds immense potential for disease therapy. However, the design principles underlying the surface functionalization of polymers remain elusive. In this study, we employed computer simulations to demonstrate how the stiffness, length, density, and distribution of polymer ligands influence their penetration ability across the cell membrane. Our simulations revealed that the stiffness of polymer ligands affects their ability to transport cargo across the membrane. Increasing the stiffness of polymer ligands can promote their delivery across the membrane, particularly for larger cargoes. Furthermore, appropriately increasing the length of polymer ligands can be more conducive to assisting cargo to enter the lower layer of the membrane. Additionally, the distribution of polymer ligands on the surface of the cargo also plays a crucial role in its transport. Specifically, the one-fourth mode and stripy mode distributions of polymer ligands exhibited higher penetration ability, assisting cargoes in penetrating the membrane. These findings provide biomimetic inspiration for designing high-efficiency functionalization polymer ligands for drug/gene delivery.


Assuntos
Polímeros , Polímeros/química , Ligantes , Transcitose , Portadores de Fármacos/química , Membrana Celular/metabolismo , Técnicas de Transferência de Genes , Sistemas de Liberação de Medicamentos , Simulação por Computador , Humanos
7.
Physiol Plant ; 175(4): e13954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37318225

RESUMO

MYB transcription factor (TF) is one of the largest superfamilies that play a vital role in multiple plant biological processes. However, the MYB family has not been comprehensively identified and functionally verified in Cajanus cajan, which is the sixth most important legume crop. Here, 170 CcR2R3-MYBs were identified and divided into 43 functional subgroups. Segmental and tandem duplications and alternative splicing events were found and promoted the expansion of the CcR2R3-MYB gene family. Functional prediction results showed that CcR2R3-MYBs were mainly involved in secondary metabolism, cell fate and identity, developmental processes, and responses to abiotic stress. Cis-acting element analysis of promoters revealed that stress response elements were widespread in the above four functional branches, further suggesting CcR2R3-MYBs were extensively involved in abiotic stress response. The transcriptome data and qRT-PCR results indicated that most of the CcR2R3-MYB genes responded to various stresses, of which the expression of CcMYB107 was significantly induced by drought stress. Overexpression of CcMYB107 enhanced antioxidant enzyme activity and increased proline and lignin accumulation, thus improving the drought resistance of C. cajan. Furthermore, Overexpression of CcMYB107 up-regulated the expression of stress-related genes and lignin biosynthesis genes after drought stress. Our findings established a strong foundation for the investigation of biological function of CcR2R3-MYB TFs in C. cajan.


Assuntos
Cajanus , Genes myb , Cajanus/genética , Cajanus/metabolismo , Resistência à Seca , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia
8.
J Fluoresc ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615895

RESUMO

Cisplatin is an important platinum drug in cancer chemotherapy in clinical practice. It is well established that the main target of cisplatin is nuclear DNA. However, recent studies have demonstrated that platinum drugs may act on some important functional proteins in the human body. E-cadherin is a newly discovered glycoprotein that has been regarded as an important sign of the occurrence and development of some tumors. This study examines the interactions between cisplatin and E-cadherin by fluorescence spectrometry and atomic force microscopy (AFM). The fluorescence spectrometry results indicated that cisplatin can efficiently quench the fluorescence of E-cadherin. The calculated binding constant Kb was 3.20 × 106 (25 ℃), 1.36 × 106(31 ℃), and 8.22 × 105 L mol-1 (37 ℃). These results reveal that the fluorescence quenching effect of cisplatin on E-cadherin is static quenching. The obtained thermodynamic parameters ΔH < 0, ΔS < 0, and ΔG < 0, indicate that the binding of cisplatin on E-cadherin is a spontaneous process dominated by hydrogen bonds and Van der Waals forces. The AFM results revealed that E-cadherins are interlaced with each other to form a spherical-chain structure. The addition of cisplatin can significantly disrupt the interlaced structure of the E-cadherin molecules.

9.
Appl Microbiol Biotechnol ; 107(5-6): 1931-1946, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36800029

RESUMO

Pigeon pea hairy root cultures (PPHRCs) have been proven to be a promising alternative for the production of health-beneficial phenolic compounds, such as the most important health-promoting compound, i.e., cajaninstilbene acid (CSA). In this study, PPHRCs were cocultured with live Aspergillus fungi for further improving phenolic productivity via biological elicitation. Aspergillus oryzae CGMCC 3.951 (AO 3.951) was found to be the optimal fungus that could achieve the maximum increment of CSA (10.73-fold increase) in 42-day-old PPHRCs under the inoculum size of mycelia 0.50% and cocultivation time 36 h. More precisely, the contents of CSA in hairy roots and culture media after fungal elicitation increased by 9.87- and 62.18-fold over control, respectively. Meanwhile, the contents of flavonoid glycosides decreased, while aglycone yields increased upon AO 3.951 elicitation. Moreover, AO 3.951 could trigger the oxidative stress and pathogen defense response thus activating the expression of biosynthesis- and ABC transporter-related genes, which contributed to the intracellular accumulation and extracellular secretion of phenolic compounds (especially CSA) in PPHRCs. And PAL2, 4CL2, STS1, and I3'H were likely to be the potential key enzyme genes regulating the biosynthesis of CSA, and ABCB11X1-1, ABCB11, and ABCG24X2 were closely related to the transmembrane transport of CSA. Overall, the cocultivation approach could make PPHRCs more commercially attractive for the production of high-value phenolic compounds such as CSA and flavonoid aglycones in nutraceutical/medicinal fields. And the elucidation of crucial biosynthesis and transport genes was important for systematic metabolic engineering aimed at increasing CSA productivity. KEY POINTS: • Cocultivation of PPHRCs and live fungi was to enhance CSA production and secretion. • PPHRCs augmented CSA productivity 10.73-fold when cocultured with AO 3.951 mycelia. • Several biosynthesis and transport genes related to CSA production were clarified.


Assuntos
Cajanus , Cajanus/metabolismo , Técnicas de Cocultura , Pisum sativum/metabolismo , Flavonoides/metabolismo , Fenóis/metabolismo , Aspergillus/metabolismo , Raízes de Plantas/microbiologia
10.
J Sep Sci ; 46(22): e2300370, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37786279

RESUMO

This research investigated the effectiveness of an integrated method for the extraction and separation of naphthoquinones and diarylheptanes from exocarp of Juglands mandshurica Maxim. (namely, green walnut husks). The target compounds were obtained by ultra-turrax homogenization (UTH) coupled with ultrasound-assisted extraction (UAE) technology followed by high-speed countercurrent chromatography (HSCCC). The UTH-UAE extraction method achieved higher efficiency with 2.49- and 2.36-fold to those by UAE, and 1.39- and 1.34-fold to those by UTH in a short time. HSCCC was adopted for further separation and purification; six target compounds, namely, regiolone (RE), juglone (JU), myricatomento-genin (MG), galleon (GA), 2-oxatrycyclo[13.2.2.13,7]eicosa-3,5,7(20),15,17,18-hexaen-10-16-diol (OE), and juglanin A (JA), were separated with more than 95.37% purities and more than 84.71% final recovery rates, respectively. In this study, the integrated strategy of extraction and separation could get high purity compounds quickly, which would provide time and solvent saved method for the natural products separation from plants.


Assuntos
Juglans , Naftoquinonas , Distribuição Contracorrente/métodos , Extratos Vegetais/química , Nozes , Juglans/química , Cromatografia Líquida de Alta Pressão
11.
Plant J ; 106(5): 1278-1297, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33733535

RESUMO

Calcineurin B-like (CBL)-interacting protein kinases (CIPKs) play a central role in Ca2+ signalling and promote drought tolerance in plants. The CIPK gene family in pigeon pea (Cajanus cajan L.), a major food crop affected by drought, has not previously been characterised. Here, we identified 28 CIPK genes in the pigeon pea genome. Five CcCIPK genes were strongly upregulated in roots upon drought treatment and were selected for further characterisation. Overexpression of CcCIPK13 and CcCIPK14 increased survival rates by two- to three-fold relative to controls after 14 days of drought. Furthermore, the three major flavonoids, genistin, genistein and apigenin, were significantly upregulated in the same transgenic plants. Using CcCIPK14 as bait, we performed a yeast two-hybrid screen and identified six interactors, including CcCBL1. CcCIPK14 exhibited autophosphorylation and phosphorylation of CcCBL1 in vitro. CcCBL1-overexpressed plants displayed higher survival rates upon drought stress as well as higher expression of flavonoid biosynthetic genes and flavonoid content. CcCIPK14-overexpressed plants in which CcCBL1 transcript levels were reduced by RNA interference had lower survival rates, which indicated CcCBL1 in the same pathway as CcCIPK14. Together, our results demonstrate a role for the CcCIPK14-CcCBL1 complex in drought stress tolerance through the regulation of flavonoid biosynthesis in pigeon pea.


Assuntos
Cajanus/genética , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Apigenina/metabolismo , Cajanus/enzimologia , Cajanus/fisiologia , Proteínas de Ligação ao Cálcio/genética , Secas , Expressão Gênica , Genisteína/metabolismo , Isoflavonas/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
12.
Planta ; 255(6): 120, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538269

RESUMO

MAIN CONCLUSION: 226 CcCYP450 genes were identified at the genomic level and were classified into 45 clades based on phylogenetic analysis. CcCYP75B165 gene was found that might play important roles in the biosynthesis of flavonoids in pigeon pea, and was significantly induced by methyl jasmonate (MeJA). The cytochrome P450 mono-oxygenase (CYP450) superfamily plays a key role in the flavonoid biosynthesis pathway and resists different kinds of stresses. Several CYP450 genes have been identified to be involved in the biosynthesis of crop protection agents. However, the CcCYP450 genes from pigeon pea have not been identified. Here, 226 CcCYP450 genes were identified at the genomic level by analysing the gene structure, distribution on chromosomes, gene duplication, and conserved motifs and were classified into 45 clades based on phylogenetic analysis. RNA-seq analysis revealed clear details of CcCYP450 genes that varied with time of MeJA (methyl jasmonate) induction. Among them, six CcCYP450 subfamily genes were found that might play important roles in the biosynthesis of flavonoids in pigeon pea. The overexpression of CcCYP75B165 in pigeon pea significantly induced the accumulation of genistin and downregulated the contents of cajaninstilbene acid, apigenin, isovitexin, and genistein and the expression of flavonoid synthase genes. This study provides theoretical guidance and plant genetic resources for cultivating new pigeon pea varieties with high flavonoid contents and exploring the molecular mechanisms of the biosynthesis of flavonoids under MeJA treatment.


Assuntos
Cajanus , Cajanus/genética , Cajanus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides , Perfilação da Expressão Gênica , Filogenia , Transcriptoma/genética
13.
Plant Physiol ; 185(3): 951-968, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33743011

RESUMO

Flavonoids are secondary metabolites that play important roles in fruit and vegetable development. Here, we examined the function of hyperoside, a unique flavonoid in okra (Abelmoschus esculentus), known to promote both flowering and seed set. We showed that the exogenous application of hyperoside significantly improved pollen germination rate and pollen tube growth by almost 50%, resulting in a 42.7% increase in the seed set rate. Of several genes induced by the hyperoside treatment, AeUF3GaT1, which encodes an enzyme that catalyzes the last step of hyperoside biosynthesis, was the most strongly induced. The transcription factor AeMYB30 enhanced AeUFG3aT1 transcription by directly binding to the AeUFG3aT1 promoter. We studied the effect of the hyperoside application on the expression of 10 representative genes at four stages of reproductive development, from pollination to seed maturity. We firstly developed an efficient transformation system that uses seeds as explants to study the roles of AeMYB30 and AeUFG3aT1. Overexpression of AeMYB30 or AeUF3GaT1 promoted seed development. Moreover, exogenous application of hyperoside partially restored the aberrant phenotype of AeUF3GaT1 RNA-interference plants. Thus, hyperoside promotes seed set in okra via a pathway involving AeUF3GaT and AeMYB30, and the exogenous application of this flavonoid is a simple method that can be used to improve seed quality and yield in okra.


Assuntos
Abelmoschus/metabolismo , Quercetina/análogos & derivados , Sementes/metabolismo , Regiões Promotoras Genéticas/genética , Quercetina/metabolismo
14.
J Exp Bot ; 73(17): 5992-6008, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35727860

RESUMO

Melatonin improves plant resistance to multiple stresses by participating in the biosynthesis of metabolites. Flavonoids are an important family of plant secondary metabolites and are widely recognized to be involved in resistance; however, the crosstalk between melatonin and flavonoid is largely unknown. We found that the resistance of pigeon pea (Cajanus cajan) to salt, drought, and heat stresses were significantly enhanced by pre-treatment with melatonin. Combined transcriptome and LC-ESI-MS/MS metabolomics analyses showed that melatonin significantly induced the enrichment of flavonoids and mediated the reprogramming of biosynthetic pathway genes. The highest fold-increase in expression in response to melatonin treatment was observed for the CcF3´H family, which encodes an enzyme that catalyses the biosynthesis of luteolin, and the transcription factor CcPCL1 directly bonded to the CcF3´H-5 promoter to enhance its expression. In addition, salt stress also induced the expression of CcPCL1 and CcF3´H-5, and their overexpression in transgenic plants greatly enhanced salt tolerance by promoting the biosynthesis of luteolin. Overall, our results indicated that pre-treatment of pigeon pea with melatonin promoted luteolin biosynthesis through the CcPCL1 and CcF3´H-5 pathways, resulting in salt tolerance. Our study shows that melatonin enhances plant tolerance to multiple stresses by mediating flavonoid biosynthesis, providing new avenues for studying the crosstalk between melatonin and flavonoids.


Assuntos
Cajanus , Melatonina , Cajanus/genética , Flavonoides , Regulação da Expressão Gênica de Plantas , Luteolina/farmacologia , Melatonina/metabolismo , Melatonina/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
15.
Nanotechnology ; 33(45)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914421

RESUMO

To fabricate a novel stimuli-responsive system enabling controlled drug release and synergistic therapy, yolk-shell shaped bismuth sulfide modified with Au nanoparticles (Au-Bi2S3) was prepared. The Au-Bi2S3nanomaterial with heterojunction structure exhibited excellent photothermal conversion efficiency and considerable free radicals yield under laser irradiation. The drug delivery capacity was confirmed by co-loading Berberine hydrochloride (BBR) and a phase change material 1-tetradecanol (PCM), which could be responsible for NIR light induced thermal controlled drug release.In vitroinvestigation demonstrated that Au-Bi2S3has cell selectivity, and with the assistance of the properties of Au-Bi2S3, the loaded drug could give full play to their cancer cell inhibition ability. Our work highlights the great potential of this nanoplatform which could deliver and control Berberine hydrochloride release as well as realize the synergistic anti-tumor strategy of photothermal therapy, photodynamic therapy and chemotherapy for tumor therapy.


Assuntos
Berberina , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Berberina/farmacologia , Berberina/uso terapêutico , Bismuto , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ouro/química , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Preparações Farmacêuticas , Fototerapia , Sulfetos
16.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163434

RESUMO

Pigeon Pea (Cajanus cajan (L.) Millsp.) is a common food crop used in many parts of the world for nutritional purposes. One of its chemical constituents is cajanin stilbene acid (CSA), which exerts anticancer activity in vitro and in vivo. In an effort to identify molecular targets of CSA, we performed a kinome-wide approach based on the measurement of the enzymatic activities of 252 human kinases. The serine-threonine kinase WNK3 (also known as protein kinase lysine-deficient 3) was identified as the most promising target of CSA with the strongest enzymatic activity inhibition in vitro and the highest binding affinity in molecular docking in silico. The lowest binding affinity and the predicted binding constant pKi of CSA (-9.65 kcal/mol and 0.084 µM) were comparable or even better than those of the known WNK3 inhibitor PP-121 (-9.42 kcal/mol and 0.123 µM). The statistically significant association between WNK3 mRNA expression and cellular responsiveness to several clinically established anticancer drugs in a panel of 60 tumor cell lines and the prognostic value of WNK3 mRNA expression in sarcoma biopsies for the survival time of 230 patients can be taken as clues that CSA-based inhibition of WNK3 may improve treatment outcomes of cancer patients and that CSA may serve as a valuable supplement to the currently used combination therapy protocols in oncology.


Assuntos
Cajanus/química , Neoplasias/mortalidade , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Salicilatos/farmacologia , Estilbenos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica , Conformação Proteica , Proteínas Quinases/análise , Proteínas Serina-Treonina Quinases/química , Salicilatos/química , Estilbenos/química , Análise de Sobrevida
17.
Molecules ; 27(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080462

RESUMO

The present study was designed to evaluate the chemical extraction, chemical composition, and antioxidant and antibacterial properties of the total flavonoids in Willow Buds (TFW). We investigated the optimal extraction of TFW using response surface methodology (RSM). Chemical compounds were analyzed using Q-Orbitrap LC-MS/MS. The DPPH radical scavenging capacity, hydroxy radical inhibitory ability, and superoxide anion radical inhibitory ability were explored to determine the antioxidant properties of flavonoid extractions. The antibacterial effect was assessed via minimal inhibitory concentration. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 50%, a time of 35 min, and a liquid/material ratio of 70:1 mL/g. Under these conditions, the yield of TFW was 7.57%. Eight flavonoids, a phenolic glycoside, and an alkaloid were enriched in the Willow Buds. The TFW exhibited significant antioxidant activity, with IC50 values of 0.18-0.24 mg/mL and antimicrobial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Streptococcus pneumoniae. TFW may be explored as potential and natural compounds in food and pharmacological applications.


Assuntos
Antioxidantes , Salix , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Líquida , Flavonoides/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
18.
Environ Microbiol ; 23(11): 6433-6449, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472186

RESUMO

Cyanobacteria have an inherited advantage in phosphonate phytoremediation. However, studies on phosphonate metabolism in cyanobacteria are rare and mostly focus on physiology and ecology. Here, C-P lyase gene cluster regulation in an undomesticated thermophilic Synechococcus OS-B' was examined in Synechocystis sp. PCC6803, a unicellular cyanobacterial model. Phylogenetic and cluster synteny analysis of C-P lyase genes revealed a closer relationship between Syn OS-B' and Thermus thermophilus, than with other cyanobacteria. Pho boxes were identified in the 5'-end-flanking region of the C-P lyase gene cluster, through which the downstream gene expression was regulated in a phosphate concentration-dependent manner. Unexpectedly, the phosphate concentration that thoroughly inhibited Pho boxes was almost two orders of magnitude higher than that of any natural or anthropogenic wastewater reported so far. The Pho boxes mediated regulation was achieved through the Pho regulon two-component system, and the absence of either SphS or SphR ablated the cell's ability to sense ambient phosphate changes. The three tandems of Pho boxes maintained inequivalent roles, of which the third tandem was not essential; however, it played a role in adjusting Pho boxes response in both positive and negative manner under phosphorus limitation.


Assuntos
Óperon , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Liases , Óperon/genética , Fosfatos/metabolismo , Filogenia , Regulon/genética , Synechocystis/genética , Synechocystis/metabolismo
19.
Planta ; 254(4): 64, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487243

RESUMO

MAIN CONCLUSION: Thirty CcMYB were identified to involve in flavonoid and lignin biosynthesis in pigeon pea genome. A comprehensive analysis of gene structure, phylogenetic relationships, distribution on chromosomes, gene duplication, and expression patterns was performed. MYB transcription factor is one of the largest gene families in plants and plays critical roles in plant growth and development, as well as resistance to biotic and abiotic stress. However, the function of MYB genes in pigeon pea (Cajanus cajan) remains largely unknown. Here, 30 R2R3-MYB which involved flavonoid and lignin biosynthesis were identified in the pigeon pea genome and were classified into five groups based on phylogenetic analysis. Simultaneously, another 122 key enzyme genes from biosynthetic pathways of flavonoid and lignin were identified and all of them were mapped on 11 chromosomes with the co-linearity relationship. Among these genes, the intron/exon organization and motif compositions were conserved and they have undergone a strong purifying selection and tandem duplications during evolution. Expression profile analysis demonstrated most of these genes were expressed in different tissues and responded significantly to MeJA, RNA-seq analysis revealed clear details of genes varied with time of induction. Ten key genes from the phenylpropanoid pathway were selected to further verify whether they responded to induction under different abiotic stress conditions (UV-B, cold, heat, salt, drought, and GA3). This study elaborates on potential regulatory relationships between R2R3-MYB genes and some key genes involved in flavonoid and lignin biosynthesis under MeJA treatment, as well as adding to the understanding of improving abiotic stress tolerance and regulating the secondary metabolism in woody crops. A simplified discussion model for the different regulation networks involved with flavonoid and lignin biosynthesis in pigeon pea is proposed.


Assuntos
Cajanus , Cajanus/genética , Cajanus/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário
20.
J Pathol ; 251(2): 147-159, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222046

RESUMO

Direct quantification of exhausted T cells in human cancer is lacking, and its predictive value for checkpoint-based treatment remains poorly investigated. We sought to systematically characterize the pan-cancer landscape and molecular hallmarks of T-cell dysfunction for the purpose of precision immunotherapy. Here, we defined a transcriptional signature for T-cell exhaustion through analyzing differential gene expression between PD-1-high and PD-1-negative CD8+ T lymphocytes from primary non-small cell lung cancer (NSCLC), followed by positive correlation tests with PDCD1 in TCGA lung carcinomas. A 78-gene signature for exhausted CD8+ T cells (GET) was identified and validated to reflect dysfunctional immune state spanning different species and disease models. We discovered that GET estimation significantly correlated with intratumoral immune cytolytic activity (CYT) and T-cell-inflamed gene expression profile (GEP) across 30 solid tumor types. Miscellaneous tumor-intrinsic and -extrinsic properties, in particular leukocyte proportions, genomic abnormalities, specific mutational signatures, and signaling pathways, were notably associated with GET levels. Furthermore, higher GET expression predicted an increased likelihood of clinical response to immune checkpoint inhibitors. These findings highlight the interrelation between T-cell exhaustion and immune cytolytic activity at the pan-cancer scale. The resulting inflamed tumor microenvironment may further crosstalk with other molecular and clinicopathological factors, which should be properly considered during immunotherapy biomarker development. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma de Células Escamosas/imunologia , Citotoxicidade Imunológica , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Microambiente Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/patologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA