Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 58(12): 2112-2125, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059445

RESUMO

An adequate carbon supply is fundamental for plants to thrive under ammonium stress. In this work, we studied the mechanisms involved in tomato (Solanum lycopersicum L.) response to ammonium toxicity when grown under ambient or elevated CO2 conditions (400 or 800 p.p.m. CO2). Tomato roots were observed to be the primary organ dealing with ammonium nutrition. We therefore analyzed nitrogen (N) and carbon (C) metabolism in the roots, integrating the physiological response with transcriptomic regulation. Elevated levels of CO2 preferentially stimulated root growth despite the high ammonium content. The induction of anaplerotic enzymes from the tricarboxylic acid (TCA) cycle led to enhanced amino acid synthesis under ammonium nutrition. Furthermore, the root transcriptional response to ammonium toxicity was improved by CO2-enriched conditions, leading to higher expression of stress-related genes, as well as enhanced modulation of genes related to signaling, transcription, transport and hormone metabolism. Tomato roots exposed to ammonium stress also showed a defense-like transcriptional response according to the modulation of genes related to detoxification and secondary metabolism, involving principally terpenoid and phenolic compounds. These results indicate that increasing C supply allowed the co-ordinated regulation of root defense mechanisms when dealing with ammonium toxicity.


Assuntos
Compostos de Amônio/toxicidade , Dióxido de Carbono/metabolismo , Raízes de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Compostos de Amônio/metabolismo , Biomassa , Carbono/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estresse Fisiológico
2.
Am J Bot ; 103(5): 808-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27208349

RESUMO

PREMISE OF THE STUDY: Abiotic constraints act as selection filters for plant invasion in stressful habitats. Adaptive phenotypic plasticity and transgenerational effects play a major role in colonization of heterogeneous habitats when the scale of environmental variation is smaller than that of gene flow. We investigated how plasticity and parental salinity conditions influence the performance of the invasive dioecious shrub Baccharis halimifolia, which replaces heterogeneous estuarine communities in Europe with monospecific and continuous stands. METHODS: In two greenhouse experiments, we grew plants derived from seeds and cuttings collected through interspersed patches differing in edaphic salinity from an invasive population. We estimated parental environmental salinity from leaf Na(+) content in parental plants, and we measured fitness and ion homeostasis of the offspring grown in contrasting salinity conditions. KEY RESULTS: Baccharis halimifolia tolerates high salinity but experiences drastic biomass reduction at moderate salinity. At moderate salinity, responses to salinity are affected by the parental salinity: flowering initiation in seedlings and male cuttings is positively correlated with parental leaf Na(+) content, and biomass is positively correlated with maternal leaf Na(+) in female cuttings and seedlings. Plant height, leaf production, specific leaf area, and ionic homeostasis at the low part of the gradient are also affected by parental salinity, suggesting enhanced shoot growth as parental salinity increases. CONCLUSIONS: Our results support plasticity to salinity and transgenerational effects as factors with great potential to contribute to the invasive ability of B. halimifolia through estuarine communities of high conservation value.


Assuntos
Baccharis/fisiologia , Estuários , Espécies Introduzidas , Salinidade , Baccharis/crescimento & desenvolvimento , Biomassa , Modelos Lineares , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Sementes/fisiologia , Sódio/análise
3.
J Sci Food Agric ; 93(9): 2162-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23339023

RESUMO

BACKGROUND: The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. RESULTS: This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. CONCLUSIONS: The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency.


Assuntos
Sulfato de Amônio/metabolismo , Proteínas Alimentares/metabolismo , Fertilizantes , Proteínas de Armazenamento de Sementes/biossíntese , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Irrigação Agrícola , Sulfato de Amônio/administração & dosagem , Pão/análise , Cromatografia Líquida de Alta Pressão , Proteínas Alimentares/análise , Proteínas Alimentares/química , Farinha/análise , Qualidade dos Alimentos , Gliadina/análise , Gliadina/biossíntese , Glutens/análise , Glutens/biossíntese , Peso Molecular , Nitratos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Compostos de Potássio/metabolismo , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/química , Sementes/química , Sementes/metabolismo , Triticum/química , Triticum/metabolismo
4.
Sci Total Environ ; 807(Pt 1): 150670, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610408

RESUMO

Nitrogen fertilization is the most important factor increasing nitrous oxide (N2O) emissions from agriculture, which is a powerful greenhouse gas. These emissions are mainly produced by the soil microbial processes of nitrification and denitrification, and the application of nitrification inhibitors (NIs) together with an ammonium-based fertilizer has been proved as an efficient way to decrease them. In this work the NIs dimethylpyrazole phosphate (DMPP) and dimethylpyrazole succinic acid (DMPSA) were evaluated in a temperate grassland under environmental changing field conditions in terms of their efficiency reducing N2O emissions and their effect on the amount of nitrifying and denitrifying bacterial populations responsible of these emissions. The stimulation of nitrifying bacteria induced by the application of ammonium sulphate as fertilizer was efficiently avoided by the application of both DMPP and DMPSA whatever the soil water content. The denitrifying bacteria population capable of reducing N2O up to N2 was also enhanced by both NIs provided that sufficiently high soil water conditions and low nitrate content were occurring. Therefore, both NIs showed the capacity to promote the denitrification process up to N2 as a mechanism to mitigate N2O emissions. DMPSA proved to be a promising NI, since it showed a more significant effect than DMPP in decreasing N2O emissions and increasing ryegrass yield.


Assuntos
Nitrificação , Óxido Nitroso , Agricultura , Desnitrificação , Fertilizantes/análise , Óxido Nitroso/análise , Solo , Microbiologia do Solo
5.
Plants (Basel) ; 10(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917372

RESUMO

Improving fertilizer nitrogen (N) use efficiency is essential to increase crop productivity and avoid environmental damage. This study was conducted during four crop cycles of winter wheat under humid Mediterranean conditions (Araba, northern Spain). The effects of N-fertilization splitting and the application of the nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) as strategies to improve grain quality were examined. The hypothesis of this study was to test if the partial ammonium nutrition and the reduction of fertilizer losses presumably induced by the application of NIs can modify the grain gliadin and glutenin protein contents and the breadmaking quality (dough rheological properties). Among both NIs assayed, only DMPP showed a slight effect of decreasing the omega gliadin fraction, following splitting either two or three times, although this effect was dependent on the year and was not reflected in terms of dough extensibility. The slight decreases observed in grain quality in terms of dough strength and glutenin content induced by DMPP suggest that DMPSA is more promising in terms of maintaining grain quality. Nonetheless, these poor effects exerted by NI application on grain quality parameters did not lead to changes in the quality parameters defining the flour aptitudes for breadmaking.

6.
Plants (Basel) ; 9(3)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143321

RESUMO

The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. The increment of major amino acids alanine and serine would indicate a photoprotective role of photorespiration under low-salinity conditions, thus the inhibition of nitrogen assimilation pathway (NR and GS activities) occurred only at high salinity. The role of cytosolic GS regarding the proline accumulation is discussed.

7.
Sci Total Environ ; 718: 134748, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31848057

RESUMO

Agricultural sustainability is compromised by nitrogen (N) losses caused by soil microbial activity. Nitrous oxide (N2O) is a potent greenhouse gas (GHG) produced as consequence of nitrification and denitrification processes in soils. Nitrification inhibitors (NI) as 3,4-dimethylpyrazole-succinic acid (DMPSA) are useful tools to reduce these N losses from fertilization. The objective of this work was to test the efficiency of DMPSA in two different tillage management systems, conventional tillage (CT) and no-tillage (NT), in a winter wheat crop under Humid Mediterranean conditions. N fertilizer was applied as ammonium sulphate (AS) with or without DMPSA in a single or split application, including an unfertilized treatment. GHG fluxes (N2O, CO2 and CH4) were measured by the closed chamber method. amoA and nosZI genes were quantified by qPCR as indicators of nitrifying and denitrifying populations. Nitrification was inhibited by DMPSA in both CT and NT, while the higher water filled pore space (WFPS) in NT promoted a better efficiency of DMPSA in this system. This higher efficiency might be due to a greater N2O reduction to N2 as result of the nosZI gene induction. Consequently, DMPSA was able to reduce N2O emissions down to the unfertilized levels in NT. Provided that NT reduced CO2 emissions and maintained crop yield compared to CT, the application DMPSA under NT management is a promising strategy to increase agro-systems sustainability under Humid Mediterranean conditions.


Assuntos
Nitrificação , Agricultura , Fertilizantes , Óxido Nitroso , Solo , Ácido Succínico
8.
Sci Rep ; 10(1): 21828, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311545

RESUMO

The current study focuses on yield and nutritional quality changes of wheat grain over the last 166 years. It is based on wheat grain quality analyses carried out on samples collected between 1850 and 2016. Samples were obtained from the Broadbalk Continuous Wheat Experiment (UK) and from herbaria from 16 different countries around the world. Our study showed that, together with an increase in carbohydrate content, an impoverishment of mineral composition and protein content occurred. The imbalance in carbohydrate/protein content was specially marked after the 1960's, coinciding with strong increases in ambient [CO2] and temperature and the introduction of progressively shorter straw varieties. The implications of altered crop physiology are discussed.


Assuntos
Evolução Molecular , Característica Quantitativa Herdável , Triticum/genética
9.
Sci Total Environ ; 651(Pt 2): 2354-2364, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336425

RESUMO

Biochar can reduce both nitrous oxide (N2O) emissions and nitrate (NO3-) leaching, but refining biochar's use for estimating these types of losses remains elusive. For example, biochar properties such as ash content and labile organic compounds may induce transient effects that alter N-based losses. Thus, the aim of this meta-analysis was to assess interactions between biochar-induced effects on N2O emissions and NO3- retention, regarding the duration of experiments as well as soil and land use properties. Data were compiled from 88 peer-reviewed publications resulting in 608 observations up to May 2016 and corresponding response ratios were used to perform a random effects meta-analysis, testing biochar's impact on cumulative N2O emissions, soil NO3- concentrations and leaching in temperate, semi-arid, sub-tropical, and tropical climate. The overall N2O emissions reduction was 38%, but N2O emission reductions tended to be negligible after one year. Overall, soil NO3- concentrations remained unaffected while NO3- leaching was reduced by 13% with biochar; greater leaching reductions (>26%) occurred over longer experimental times (i.e. >30 days). Biochar had the strongest N2O-emission reducing effect in paddy soils (Anthrosols) and sandy soils (Arenosols). The use of biochar reduced both N2O emissions and NO3- leaching in arable farming and horticulture, but it did not affect these losses in grasslands and perennial crops. In conclusion, the time-dependent impact on N2O emissions and NO3- leaching is a crucial factor that needs to be considered in order to develop and test resilient and sustainable biochar-based N loss mitigation strategies. Our results provide a valuable starting point for future biochar-based N loss mitigation studies.

10.
J Agric Food Chem ; 67(31): 8441-8451, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339045

RESUMO

The increase in the atmospheric CO2 concentration is predicted to influence wheat production and grain quality and nutritional properties. In the present study, durum wheat (Triticum durum Desf. cv. Sula) was grown under two different CO2 (400 versus 700 µmol mol-1) concentrations to examine effects on the crop yield and grain quality at different phenological stages (from grain filling to maturity). Exposure to elevated CO2 significantly increased aboveground biomass and grain yield components. Growth at elevated CO2 diminished the elemental N content as well as protein and free amino acids, with a typical decrease in glutamine, which is the most represented amino acid in grain proteins. Such a general decrease in nitrogenous compounds was associated with altered kinetics of protein accumulation, N remobilization, and N partitioning. Our results highlight important modifications of grain metabolism that have implications for its nutritional quality.


Assuntos
Dióxido de Carbono/metabolismo , Sementes/crescimento & desenvolvimento , Triticum/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Dióxido de Carbono/análise , Cinética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/metabolismo , Triticum/química , Triticum/crescimento & desenvolvimento
11.
Front Plant Sci ; 9: 853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988400

RESUMO

This work explores whether the natural abundance of N isotopes technique could be used to understand the movement of N within the plant during vegetative and grain filling phases in wheat crop (Triticum aestivum L.) under different fertilizer management strategies. We focus on the effect of splitting the same N dose through a third late amendment at flag leaf stage (GS37) under humid Mediterranean conditions, where high spring precipitations can guarantee the incorporation of the lately applied N to the soil-plant system in an efficient way. The results are discussed in the context of agronomic parameters as N content, grain yield and quality, and show that further splitting the same N dose improves the wheat quality and induces a better nitrogen use efficiency. The nitrogen isotopic natural abundance technique shows that N remobilization is a discriminating process that leads to an impoverishment in 15N of senescent leaves and grain itself. This technique also reflects the more efficient use of N resources (fertilizer and native soil-N) when plants receive a late N amendment.

12.
J Plant Physiol ; 170(8): 758-71, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23485260

RESUMO

Ammonium is a paradoxical nutrient ion. Despite being a common intermediate in plant metabolism whose oxidation state eliminates the need for its reduction in the plant cell, as occurs with nitrate, it can also result in toxicity symptoms. Several authors have reported that carbon enrichment in the root zone enhances the synthesis of carbon skeletons and, accordingly, increases the capacity for ammonium assimilation. In this work, we examined the hypothesis that increasing the photosynthetic photon flux density is a way to increase plant ammonium tolerance. Wheat plants were grown in a hydroponic system with two different N sources (10mM nitrate or 10mM ammonium) and with two different light intensity conditions (300 µmol photon m(-2)s(-1) and 700 µmol photon m(-2)s(-1)). The results show that, with respect to biomass yield, photosynthetic rate, shoot:root ratio and the root N isotopic signature, wheat behaves as a sensitive species to ammonium nutrition at the low light intensity, while at the high intensity, its tolerance is improved. This improvement is a consequence of a higher ammonium assimilation rate, as reflected by the higher amounts of amino acids and protein accumulated mainly in the roots, which was supported by higher tricarboxylic acid cycle activity. Glutamate dehydrogenase was a key root enzyme involved in the tolerance to ammonium, while glutamine synthetase activity was low and might not be enough for its assimilation.


Assuntos
Compostos de Amônio/toxicidade , Ciclo do Ácido Cítrico , Nitrogênio/metabolismo , Fotossíntese , Triticum/efeitos dos fármacos , Compostos de Amônio/metabolismo , Asparagina/metabolismo , Biomassa , Metabolismo dos Carboidratos , Carbono/metabolismo , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Nitratos/fisiologia , Nitrogênio/química , Luz Solar , Triticum/metabolismo , Triticum/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA