Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779116

RESUMO

Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.


Assuntos
Apolipoproteína C-I/química , Apolipoproteína C-I/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/metabolismo , Motivos de Aminoácidos , Apolipoproteína C-I/genética , Apolipoproteínas E/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Ligação Proteica , Pseudogenes , Receptores de Lipoproteínas/metabolismo
2.
Int J Mol Sci ; 20(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909560

RESUMO

Apolipoprotein E (apoE) is mainly secreted by hepatocytes and incorporated into most plasma lipoproteins. Macrophages, which accumulate cholesterol and are critical for the development of the atherosclerotic plaque, are also an important, albeit smaller, apoE source. Distal regulatory elements control cell-specific activity of the apoE promoter: multienhancers (ME.1/2) in macrophages and hepatic control regions (HCR-1/2) in hepatocytes. A member of AP-1 cell growth regulator, c-Jun regulates the transcription of various apolipoproteins and proinflammatory molecules implicated in atherosclerosis. We aimed to investigate the effect of c-Jun on apoE expression in macrophages versus hepatocytes and to reveal the underlying molecular mechanisms. Herein we show that c-Jun had an opposite, cell-specific effect on apoE expression: downregulation in macrophages but upregulation in hepatocytes. Transient transfections using ME.2 deletion mutants and DNA pull-down (DNAP) assays showed that the inhibitory effect of c-Jun on the apoE promoter in macrophages was mediated by a functional c-Jun binding site located at 301/311 on ME.2. In hepatocytes, c-Jun overexpression strongly increased apoE expression, and this effect was due to c-Jun binding at the canonical site located at -94/-84 on the apoE proximal promoter, identified by transient transfections using apoE deletion mutants, DNAP, and chromatin immunoprecipitation assays. Overall, the dual effect of c-Jun on apoE gene expression led to decreased cholesterol efflux in macrophages resident in the atherosclerotic plaque synergized with an increased level of systemic apoE secreted by the liver to exacerbate atherogenesis.


Assuntos
Apolipoproteínas E/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Elementos Facilitadores Genéticos , Hepatócitos/imunologia , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Células RAW 264.7 , Fator de Transcrição AP-1/metabolismo
3.
Mol Biol Rep ; 45(4): 497-509, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29725814

RESUMO

In the present study we aimed to evaluate the potential of in vivo inhibition of miR-486 and miR-92a to reverse hyperlipidemia, then to identify and validate their lipid metabolism-related target genes. Male Golden-Syrian hamsters fed a hyperlipidemic (HL) diet (standard chow plus 3% cholesterol and 15% butter, 10 weeks) were injected subcutaneously with lock-nucleic acid inhibitors for either miR-486 or miR-92a. Lipids and miRNAs levels in liver and plasma, and hepatic expression of miRNAs target genes were assessed in all HL hamsters. MiR-486 and miR-92a target genes were identified by miRWalk analysis and validated by 3'UTR cloning in pmirGLO vectors. HL hamsters had increased liver (2.8-fold) and plasma (twofold) miR-486 levels, and increased miR-92a (2.8-fold and 1.8-fold, respectively) compared to normolipidemic hamsters. After 2 weeks treatment, liver and plasma cholesterol levels decreased (23 and 17.5% for anti-miR-486, 16 and 22% for miR-92a inhibition). Hepatic triglycerides and non-esterified fatty acids content decreased also significantly. Bioinformatics analysis and 3'UTR cloning in pmirGLO vector showed that sterol O-acyltransferase-2 (SOAT2) and sterol-regulatory element binding transcription factor-1 (SREBF1) are targeted by miR-486, while ATP-binding cassette G4 (ABCG4) and Niemann-Pick C1 (NPC1) by miR-92a. In HL livers and in cultured HepG2 cells, miR-486 inhibition restored the levels of SOAT2 and SREBF1 expression, while anti-miR-92a restored ABCG4, NPC1 and SOAT2 expression compared to scrambled-treated HL hamsters or cultured cells. In vivo inhibition of miR-486 and miR-92a could be a useful and valuable new approach to correct lipid metabolism dysregulation.


Assuntos
Colesterol/metabolismo , Fígado/metabolismo , MicroRNAs/antagonistas & inibidores , Animais , Colesterol/sangue , Biologia Computacional , Cricetinae , Células Hep G2 , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/terapia , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Masculino , Mesocricetus , MicroRNAs/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue , Esterol O-Aciltransferase 2
4.
Biochem Biophys Res Commun ; 468(1-2): 190-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26519880

RESUMO

Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor ß (TRß) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRß and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRß/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRß/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRß binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRß/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.


Assuntos
Apolipoproteínas E/genética , Astrócitos/metabolismo , Hormônios Tireóideos/metabolismo , Regulação para Cima , Alitretinoína , Sítios de Ligação , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , Receptores dos Hormônios Tireóideos/metabolismo , Receptor X Retinoide alfa/metabolismo , Receptores X de Retinoides/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Tretinoína/metabolismo , Tri-Iodotironina/metabolismo
5.
Biomedicines ; 11(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37893070

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.

6.
J Biol Chem ; 286(16): 13891-904, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21372127

RESUMO

In atherogenesis, macrophage-derived apolipoprotein E (apoE) has an athero-protective role by a mechanism that is not fully understood. We investigated the regulatory mechanisms involved in the modulation of apoE expression in macrophages. The experiments showed that the promoters of all genes of the apoE/apoCI/apoCIV/apoCII gene cluster are enhanced by multienhancer 2 (ME.2), a regulatory region that is located 15.9 kb downstream of the apoE gene. ME.2 interacts with the apoE promoter in a macrophage-specific manner. Transient transfections in RAW 264.7 macrophages showed that the activity of ME.2 was strongly decreased by deletion of either 87 bp from the 5' end or 131 bp from the 3' end. We determined that the minimal fragment of this promoter that can be activated by ME.2 is the proximal -100/+73 region. The analysis of the deletion mutants of ME.2 revealed the importance of the 5' end of ME.2 in apoE promoter transactivation. Chromatin conformational capture assays demonstrated that both ME.2 and ME.1 physically interacted with the apoE promoter in macrophages. Our data showed that phorbol 12-myristate 13-acetate-induced differentiation of macrophages is accompanied by a robust induction of apoE and STAT1 expression. In macrophages (but not in hepatocytes), STAT1 up-regulated apoE gene expression via ME.2. The STAT1 binding site was located in the 174-182 region of ME.2. In conclusion, the specificity of the interactions between the two multienhancers (ME.1 and ME.2) and the apoE promoter indicates that these distal regulatory elements play an important role in the modulation of apoE gene expression in a cell-specific manner.


Assuntos
Apolipoproteínas E/metabolismo , Regulação da Expressão Gênica , Macrófagos/citologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Elementos Facilitadores Genéticos , Genômica , Hepatócitos/citologia , Humanos , Macrófagos/metabolismo , Camundongos , Regiões Promotoras Genéticas , Acetato de Tetradecanoilforbol/farmacologia
7.
Biomedicines ; 10(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35884883

RESUMO

Apolipoprotein A-II (apoA-II) is the second most abundant apolipoprotein in high-density lipoprotein (HDL) particles, playing an important role in lipid metabolism. Human and murine apoA-II proteins have dissimilar properties, partially because human apoA-II is dimeric whereas the murine homolog is a monomer, suggesting that the role of apoA-II may be quite different in humans and mice. As a component of HDL, apoA-II influences lipid metabolism, being directly or indirectly involved in vascular diseases. Clinical and epidemiological studies resulted in conflicting findings regarding the proatherogenic or atheroprotective role of apoA-II. Human apoA-II deficiency has little influence on lipoprotein levels with no obvious clinical consequences, while murine apoA-II deficiency causes HDL deficit in mice. In humans, an increased plasma apoA-II concentration causes hypertriglyceridemia and lowers HDL levels. This dyslipidemia leads to glucose intolerance, and the ensuing high blood glucose enhances apoA-II transcription, generating a vicious circle that may cause type 2 diabetes (T2D). ApoA-II is also used as a biomarker in various diseases, such as pancreatic cancer. Herein, we provide a review of the most recent findings regarding the roles of apoA-II and its functions in various physiological processes and disease states, such as cardiovascular disease, cancer, amyloidosis, hepatitis, insulin resistance, obesity, and T2D.

8.
J Control Release ; 338: 754-772, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530051

RESUMO

The receptor for advanced glycation end products (RAGE) plays a central role in the chronic inflammatory process associated with atherosclerosis development. We aimed to develop lipoplexes carrying RAGE-short hairpin (sh) RNA, targeted to the adhesion molecule P-selectin, selectively expressed on the surface of activated endothelium (Psel-lipo/shRAGE) to down-regulate RAGE expression as a therapeutic strategy for atherosclerosis. In vitro, Psel-lipo/shRAGE lipoplexes were efficiently taken up by activated endothelial cells (EC), decreased the expression of RAGE protein, and proved to be functional by reducing the monocyte adhesion to activated EC. In ApoE-deficient mice, the targeted lipoplexes accumulated specifically and efficiently transfected the aorta. The repeated administration of Psel-lipo/shRAGE lipoplexes, twice per week for one month: i) reduced the expression of RAGE protein in the aorta by decreasing the expression of NF-kB and TNF-α; ii) diminished the plasma levels of TNF-α, IL6, IL-1ß, and MCP-1; iii) inhibited the atherosclerotic plaque development and iv) had no significant adverse effects. In conclusion, the newly developed Psel-lipo/shRAGE lipoplexes reduce the inflammatory processes associated with RAGE signaling and the progression of atherosclerosis in ApoE-deficient mice. Downregulation of RAGE employing these lipoplexes may represent a promising new targeted therapy to block atherosclerosis progression.


Assuntos
Aterosclerose , Células Endoteliais , Animais , Aterosclerose/genética , Aterosclerose/terapia , Inflamação/terapia , Camundongos , Camundongos Knockout , Selectina-P , RNA Interferente Pequeno , Receptor para Produtos Finais de Glicação Avançada
9.
Pharmaceutics ; 12(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182380

RESUMO

Naringenin, an anti-inflammatory citrus flavonoid, is restrained from large-scale use by its reduced water solubility and bioavailability. To overcome these limitations, naringenin was loaded into lipid nanoemulsions directed towards vascular cell adhesion molecule (VCAM)-1, exposed by activated endothelium, and delivered intravenously in a murine model of lipopolysaccharide (LPS)-induced inflammation. To follow the in vivo bio-distribution, naringenin-loaded nanoemulsions were labeled with near-infrared probe Indocyanine Green (ICG). Based on ICG fluorescence, a VCAM-1-dependent retention of nanoemulsions was detected in the heart and aorta, while ultra-high-performance liquid chromatography (UHPLC) measurements showed a target-selective accumulation of naringenin in the heart and lungs. Correlated, fluorescence and UHPLC data indicated a mixed behavior of the VCAM-1 directed nanoparticles, which were driven not only by the targeting moiety but also by passive retention. The treatment with naringenin-loaded nanoemulsions reduced the mRNA levels of some inflammatory mediators in organs harvested from mice with acute inflammation, indicative of their anti-inflammatory potential. The data support a novel theranostic nanoplatform for inflammation, the naringenin/ICG-loaded nanoparticles that either by passive accumulation or effective targeting of the activated endothelium can be employed for imaging inflamed vascular areas and efficient delivery of the encapsulated therapeutic agent.

10.
Pharmaceutics ; 12(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498305

RESUMO

Calcific aortic valve disease (CAVD) is a progressive disorder that increases in prevalence with age. An important role in aortic valve calcification is played by valvular interstitial cells (VIC), that with age or in pathological conditions acquire an osteoblast-like phenotype that advances the disease. Therefore, pharmacological interventions aiming to stop or reverse the osteoblastic transition of VIC may represent a therapeutic option for CAVD. In this study, we aimed at developing a nanotherapeutic strategy able to prevent the phenotypic switch of human aortic VIC into osteoblast-like cells. We hypothesize that nanocarriers designed for silencing the Runt-related transcription factor 2 (Runx2) will stop the progress or reverse the osteodifferentiation of human VIC, induced by high glucose concentrations and pro-osteogenic factors. We report here the potential of fullerene (C60)-polyethyleneimine (PEI)/short hairpin (sh)RNA-Runx2 nano-polyplexes to efficiently down-regulate Runx2 mRNA and protein expression leading subsequently to a significant reduction in the expression of osteogenic proteins (i.e. ALP, BSP, OSP and BMP4) in osteoblast-committed VIC. The data suggest that the silencing of Runx2 could represent a novel strategy to impede the osteoblastic phenotypic shift of VIC and the ensuing progress of CAVD.

11.
Pharmaceutics ; 11(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382634

RESUMO

Citrus flavonoids have well-documented protective effects on cardiovascular system, but the poor water solubility and reduced bioavailability restrict their therapeutic use. We aimed to overcome these limitations and encapsulated naringenin and hesperetin into lipid nanoemulsions (LNs), targeted to vascular cell adhesion molecule-1 (VCAM-1), which is expressed on activated endothelial cells (ECs). LNs were characterized by a hydrodynamic size of ~200 nm, negative zeta potential, an encapsulation efficiency of flavonoids higher than 80%, good in vitro stability and steady release of the cargo. The LNs were neither cytotoxic to human ECs line EA.hy926, nor provoked in vitro lysis of murine erithrocytes. Then, we tested whether these nanoformulations reduce tumor necrosis factor-alpha (TNF-α) induced EC-activation. We found that flavonoid-loaded LNs, either non-targeted or targeted to the endothelium, were taken up by the EA.hy926 cells in a dose-dependent manner, but dependent on TNF-α only in the case of endothelium-targeted LNs. Moreover, these nanoparticles inhibited both the adhesion and transmigration of THP-1 monocytes on/through activated ECs, by mechanisms involving a reduced expression of the pro-inflammatory chemokine monocyte chemotactic protein 1 (MCP-1) and diminished nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).

12.
Pharmaceutics ; 11(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669699

RESUMO

: The progress in small-interfering RNA (siRNA) therapeutics depends on the development of suitable nanocarriers to perform specific and effective delivery to dysfunctional cells. In this paper, we questioned whether P-selectin, a cell adhesion molecule specifically expressed on the surface of activated endothelial cells (EC) could be employed as a target for nanotherapeutic intervention. To this purpose, we developed and characterized P-selectin targeted PEGylated cationic liposomes able to efficiently pack siRNA and to function as efficient vectors for siRNA delivery to tumour necrosis factor-α (TNF-α) activated EC. Targeted cationic liposomes were obtained by coupling a peptide with high affinity for P-selectin to a functionalized PEGylated phospholipid inserted in the liposomes' bilayer (Psel-lipo). As control, scrambled peptide coupled cationic liposomes (Scr-lipo) were used. The lipoplexes obtained by complexation of Psel-lipo with siRNA (Psel-lipo/siRNA) were taken up specifically and at a higher extent by TNF-α activated b.End3 endothelial cells as compared to non-targeted Scr-lipo/siRNA. The Psel-lipo/siRNA delivered with high efficiency siRNA into the cells. The lipoplexes were functional as demonstrated by the down-regulation of the selected gene (GAPDH). The results demonstrate an effective targeted delivery of siRNA into cultured activated endothelial cells using P-selectin directed PEGylated cationic liposomes, which subsequently knock-down the desired gene.

13.
PLoS One ; 12(3): e0174078, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355284

RESUMO

Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Macrófagos/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Animais , Apolipoproteínas E/metabolismo , Sítios de Ligação , Linhagem Celular , Células HEK293 , Células Hep G2 , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Especificidade de Órgãos , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Especificidade da Espécie , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
14.
J Cancer ; 8(7): 1284-1291, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607604

RESUMO

Lissencephaly-1 (Lis1) protein is a dynein-binding protein involved in neural stem cell division, morphogenesis and motility. To determine whether Lis1 is a key factor in glioblastoma, we evaluated its expression and function in CD133+ glioblastoma cells. Global, Lis1 gene expression is similar in glioblastoma and normal samples. Interestingly, immunohistochemistry data indicate increased Lis1 expression colocalized with CD133 in a subset of glioma cells, including the tumor cells with perivascular localization. Lis1 gene expression is increased up to 60-fold in CD133 positive cells isolated from primary cultures of glioblastoma and U87 glioblastoma cell line as compared to CD133 negative cells. To investigate the potential role of Lis1 in CD133+ glioblastoma cells, we silenced Lis1 gene in U87 cell line obtaining shLis1-U87 cells. In shLis1-U87 cell culture we noticed a significant decrease of CD133+ cells fraction as compared with control cells and also, CD133+ cells isolated from shLis1-U87 were two times less adhesive, migratory and proliferative, as compared with control transfected U87 CD133+ cells. Moreover, Lis1 silencing decreased the proliferative capacity of irradiated U87 cells, an effect attributable to the lower percentage of CD133+ cells. This is the first report showing a preferential expression of Lis1 gene in CD133+ glioblastoma cells. Our data suggest a role of Lis1 in regulating CD133+ glioblastoma cells function.

15.
World J Biol Chem ; 7(1): 178-87, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26981206

RESUMO

AIM: To investigate the effect of high homocysteine (Hcy) levels on apolipoprotein E (apoE) expression and the signaling pathways involved in this gene regulation. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot were used to assess apoE expression in cells treated with various concentrations (50-500 µmol/L) of Hcy. Calcium phosphate-transient transfections were performed in HEK-293 and RAW 264.7 cells to evaluate the effect of Hcy on apoE regulatory elements [promoter and distal multienhancer 2 (ME2)]. To this aim, plasmids containing the proximal apoE promoter [(-500/+73)apoE construct] alone or in the presence of ME2 [ME2/(-500/+73)apoE construct] to drive the expression of the reporter luciferase gene were used. Co-transfection experiments were carried out to investigate the downstream effectors of Hcy-mediated regulation of apoE promoter by using specific inhibitors or a dominant negative form of IKß. In other co-transfections, the luciferase reporter was under the control of synthetic promoters containing multiple specific binding sites for nuclear factor kappa B (NF-κB), activator protein-1 (AP-1) or nuclear factor of activated T cells (NFAT). Chromatin immunoprecipitation (ChIP) assay was accomplished to detect the binding of NF-κB p65 subunit to the apoE promoter in HEK-293 treated with 500 µmol/L Hcy. As control, cells were incubated with similar concentration of cysteine. NF-κB p65 proteins bound to DNA were immunoprecipitated with anti-p65 antibodies and DNA was identified by PCR using primers amplifying the region -100/+4 of the apoE gene. RESULTS: RT-PCR revealed that high levels of Hcy (250-750 µmol/L) induced a 2-3 fold decrease in apoE mRNA levels in HEK-293 cells, while apoE gene expression was not significantly affected by treatment with lower concentrations of Hcy (100 µmol/L). Immunoblotting data provided additional evidence for the negative role of Hcy in apoE expression. Hcy decreased apoE promoter activity, in the presence or absence of ME2, in a dose dependent manner, in both RAW 264.7 and HEK-293 cells, as revealed by transient transfection experiments. The downstream effectors of the signaling pathways of Hcy were also investigated. The inhibitory effect of Hcy on the apoE promoter activity was counteracted by MAPK/ERK kinase 1/2 (MEK1/2) inhibitor U0126, suggesting that MEK1/2 is involved in the downregulation of apoE promoter activity by Hcy. Our data demonstrated that Hcy-induced inhibition of apoE took place through activation of NF-κB. Moreover, we demonstrated that Hcy activated a synthetic promoter containing three NF-κB binding sites, but did not affect promoters containing AP-1 or NFAT binding sites. ChIP experiments revealed that NF-κB p65 subunit is recruited to the apoE promoter following Hcy treatment of cells. CONCLUSION: Hcy-induced stress negatively modulates apoE expression via MEK1/2 and NF-κB activation. The decreased apoE expression in peripheral tissues may aggravate atherosclerosis, neurodegenerative diseases and renal dysfunctions.

16.
J Biol Chem ; 282(30): 21776-85, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17553793

RESUMO

The atheroprotective role of apolipoprotein E (apoE) is well established. During inflammation, expression of apoE in macrophages is reduced leading to enhanced atheromatous plaque development. In the present study, we investigated the signaling pathways involved in the repression of apoE gene expression in response to lipopolysaccharide (LPS) treatment, a condition that mimics the inflammatory stress, in mouse macrophages RAW 264.7. We identified Tpl-2 and MEKK1 as the kinases that are primarily responsible for the down-regulation of apoE promoter activity by LPS. Using a dominant negative form of IkappaB, we established that Tpl-2 and MEKK1 signaling pathways converge to NF-kappaB acting on the apoE core promoter -55/+73. In addition to NF-kappaB activation, LPS also activated c-Jun via its phosphorylation by JNK. The activity of the apoE promoter was repressed by c-Jun, whereas small interference RNA-mediated inhibition of endogenous c-Jun expression reversed the inhibitory effect of Tpl-2 on the apoE promoter. Transfection experiments and DNA binding assays showed that the binding site for c-Jun is in the -55/+73 region of the apoE promoter. Finally, we showed that LPS inhibited apoE gene expression via activation of the Tpl-2/MEK/ERK pathway acting on a different apoE promoter region. In summary, LPS represses apoE gene expression in macrophages via signaling pathways that involve the upstream kinases Tpl-2 and MEKK1, the intermediate mitogen-activated protein kinases ERK and JNK, and the downstream transcription factors AP-1 and NF-kappaB that inhibit the apoE promoter activity via distinct regions.


Assuntos
Apolipoproteínas E/genética , Regulação da Expressão Gênica , Inflamação/fisiopatologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Núcleo Celular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição , Transfecção
17.
Biochemistry ; 41(10): 3468-76, 2002 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11876655

RESUMO

Translin is an octameric single-stranded DNA binding protein consisting of 228 amino acid residues per monomer. This protein contains two cysteine residues per monomer. Studies of reactions with DTNB show that both cysteines are reactive and exhibit biphasic reaction kinetics. Further studies with two site-directed mutants, C58S and C225S, confirm that Cys-58 reacts slowly while Cys-225 reacts quickly. Pyrene excimer emission was observed for pyrene maleimide-labeled C58S mutant. This was not observed, however, with the pyrene maleimide-labeled C225S mutant. DAS (decay associated spectra) revealed that all excited pyrene labels on C225 residues can form excimers with pyrenes of adjacent subunits within a few nanoseconds. Time-resolved emission anisotropy detects a rotational correlation time appropriate for octameric but not dimeric species. These results indicate proximity for the Cys-225 residues on adjacent monomers and that the subunits must interact in a tail-to-tail orientation. Moreover, disulfide bonds are not required for the formation of an octamer.


Assuntos
Proteínas de Ligação a DNA/química , Maleimidas/química , Pirenos/química , Sequência de Bases , Biopolímeros , Primers do DNA , Proteínas de Ligação a DNA/genética , Ácido Ditionitrobenzoico/química , Polarização de Fluorescência , Humanos , Mutagênese Sítio-Dirigida , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA