Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Methods ; 21(5): 889-896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580844

RESUMO

The background light from out-of-focus planes hinders resolution enhancement in structured illumination microscopy when observing volumetric samples. Here we used selective plane illumination and reversibly photoswitchable fluorescent proteins to realize structured illumination within the focal plane and eliminate the out-of-focus background. Theoretical investigation of the imaging properties and experimental demonstrations show that selective plane activation is beneficial for imaging dense microstructures in cells and cell spheroids.


Assuntos
Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Humanos , Esferoides Celulares , Iluminação/métodos , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(12): e2304866121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483992

RESUMO

Accelerating the measurement for discrimination of samples, such as classification of cell phenotype, is crucial when faced with significant time and cost constraints. Spontaneous Raman microscopy offers label-free, rich chemical information but suffers from long acquisition time due to extremely small scattering cross-sections. One possible approach to accelerate the measurement is by measuring necessary parts with a suitable number of illumination points. However, how to design these points during measurement remains a challenge. To address this, we developed an imaging technique based on a reinforcement learning in machine learning (ML). This ML approach adaptively feeds back "optimal" illumination pattern during the measurement to detect the existence of specific characteristics of interest, allowing faster measurements while guaranteeing discrimination accuracy. Using a set of Raman images of human follicular thyroid and follicular thyroid carcinoma cells, we showed that our technique requires 3,333 to 31,683 times smaller number of illuminations for discriminating the phenotypes than raster scanning. To quantitatively evaluate the number of illuminations depending on the requisite discrimination accuracy, we prepared a set of polymer bead mixture samples to model anomalous and normal tissues. We then applied a home-built programmable-illumination microscope equipped with our algorithm, and confirmed that the system can discriminate the sample conditions with 104 to 4,350 times smaller number of illuminations compared to standard point illumination Raman microscopy. The proposed algorithm can be applied to other types of microscopy that can control measurement condition on the fly, offering an approach for the acceleration of accurate measurements in various applications including medical diagnosis.


Assuntos
Microscopia , Análise Espectral Raman , Humanos , Microscopia/métodos , Análise Espectral Raman/métodos , Glândula Tireoide , Microscopia Óptica não Linear , Aprendizado de Máquina
3.
Anal Chem ; 96(18): 7047-7055, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653469

RESUMO

Raman spectroscopy can provide nonbiased single-cell analysis based on the endogenous ensemble of biomolecules, with alterations in cellular content indicative of cell state and disease. The measurements themselves can be performed in a variety of modes: generally, full imaging takes the most time but can provide the most information. By reducing the imaging resolution and generating the most characteristic single-cell Raman spectrum in the shortest time, we optimize the utility of the Raman measurement for cell phenotyping. Here, we establish methods to compare these different measurement approaches and assess what, if any, undesired effects occur in the cell. Assuming that laser-induced damage should be apparent as a change in molecular spectra across sequential measurements, and by defining the information content as the Raman-based separability of two cell lines, we thereby establish a parameter range for optimum measurement sensitivity and single-cell throughput in single-cell Raman spectroscopic analysis. While the work here uses 532 nm irradiation, the same approach can be generalized to Raman analysis at other wavelengths.


Assuntos
Análise de Célula Única , Análise Espectral Raman , Análise Espectral Raman/métodos , Análise de Célula Única/métodos , Humanos , Fenótipo , Ensaios de Triagem em Larga Escala
4.
Anal Chem ; 95(39): 14616-14623, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725051

RESUMO

Cell spheroids offer alternative in vitro cell models to monolayer cultured cells because they express complexities similar to those of in vivo tissues, such as cellular responses to drugs and chemicals. Raman spectroscopy emerged as a powerful analytical tool for detecting chemical changes in living cells because it nondestructively provides vibrational information regarding a target. Although multiple iterations are required in drug screening to determine drugs to treat cell spheroids and assess the inter-spheroid heterogeneity, current Raman applications used in spheroids analysis allow the observation of only a few spheroids owing to the low throughput of Raman spectroscopy. In this study, we developed a multifocal Raman spectrophotometer that enables simultaneous analysis of multiple spheroids in separate wells of a regular 96-well plate. By utilizing 96 focal spots excitation and parallel signal collection, our system can improve the throughput by approximately 2 orders of magnitude compared to a conventional single-focus Raman microscope. The Raman spectra of HeLa cell spheroids treated with anticancer drugs and HepG2 cell spheroids treated with free fatty acids were measured simultaneously, and concentration-dependent cellular responses were observed in both studies. Using the multifocal Raman spectrophotometer, we rapidly observed chemical changes in spheroids, and thus, this system can facilitate the application of Raman spectroscopy in analyzing the cellular responses of spheroids.

5.
Anal Chem ; 95(33): 12298-12305, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37561910

RESUMO

Raman hyperspectral microscopy is a valuable tool in biological and biomedical imaging. Because Raman scattering is often weak in comparison to other phenomena, prevalent spectral fluctuations and contaminations have brought advancements in analytical and chemometric methods for Raman spectra. These chemometric advances have been key contributors to the applicability of Raman imaging to biological systems. As studies increase in scale, spectral contamination from extrinsic background, intensity from sources such as the optical components that are extrinsic to the sample of interest, has become an emerging issue. Although existing baseline correction schemes often reduce intrinsic background such as autofluorescence originating from the sample of interest, extrinsic background is not explicitly considered, and these methods often fail to reduce its effects. Here, we show that extrinsic background can significantly affect a classification model using Raman images, yielding misleadingly high accuracies in the distinction of benign and malignant samples of follicular thyroid cell lines. To mitigate its effects, we develop extrinsic background correction (EBC) and demonstrate its use in combination with existing methods on Raman hyperspectral images. EBC isolates regions containing the smallest amounts of sample materials that retain extrinsic contributions that are specific to the device or environment. We perform classification both with and without the use of EBC, and we find that EBC retains biological characteristics in the spectra while significantly reducing extrinsic background. As the methodology used in EBC is not specific to Raman spectra, correction of extrinsic effects in other types of hyperspectral and grayscale images is also possible.

6.
Anal Chem ; 95(24): 9252-9262, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293770

RESUMO

To promote the clinical application of human induced pluripotent stem cell (hiPSC)-derived hepatocytes, a method capable of monitoring regenerative processes and assessing differentiation efficiency without harming or modifying these cells is important. Raman microscopy provides a powerful tool for this as it enables label-free identification of intracellular biomolecules in live samples. Here, we used label-free Raman microscopy to assess hiPSC differentiation into hepatocyte lineage based on the intracellular chemical content. We contrasted these data with similar phenotypes from the HepaRG and from commercially available hiPSC-derived hepatocytes (iCell hepatocytes). We detected hepatic cytochromes, lipids, and glycogen in hiPSC-derived hepatocyte-like cells (HLCs) but not biliary-like cells (BLCs), indicating intrinsic differences in biomolecular content between these phenotypes. The data show significant glycogen and lipid accumulation as early as the definitive endoderm transition. Additionally, we explored the use of Raman imaging as a hepatotoxicity assay for the HepaRG and iCell hepatocytes, with data displaying a dose-dependent reduction of glycogen accumulation in response to acetaminophen. These findings show that the nondestructive and high-content nature of Raman imaging provides a promising tool for both quality control of hiPSC-derived hepatocytes and hepatotoxicity screening.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células-Tronco Pluripotentes Induzidas , Humanos , Hepatócitos , Diferenciação Celular
7.
Biochem Biophys Res Commun ; 640: 192-201, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521425

RESUMO

Follicular neoplasms of the thyroid include follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA). However, the differences in cytological findings between FTC and FTA remain undetermined. Here, we aimed to evaluate the accumulation of lipid droplets (LDs) and the expression of adipophilin (perilipin 2/ADRP/ADFP), a known LD marker, in cultured FTC cells. We also immunohistochemically compared adipophilin expression in the FTC and FTA of resected human thyroid tissues. Cultured FTC (FTC-133 and RO82W-1) possessed increased populations of LDs compared to thyroid follicular epithelial (Nthy-ori 3-1) cells. In vitro treatment with phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling inhibitors (LY294002, MK2206, and rapamycin) in FTC-133 cells downregulated the PI3K/Akt/mTOR/sterol regulatory element-binding protein 1 (SREBP1) signaling pathway, resulting in a significant reduction in LD accumulation. SREBP1 is a master transcription factor that controls lipid metabolism. Fluorescence immunocytochemistry revealed adipophilin expression in the LDs of FTC-133 cells. Immunohistochemical analysis of surgically resected human thyroid tissues revealed significantly increased expression of adipophilin in FTC compared with FTA and adjacent non-tumorous thyroid epithelia. Taken together, LDs and adipophilin were abundant in cultured FTC; the evaluation of adipophilin expression can help distinguish FTC from FTA in surgical specimens.


Assuntos
Adenocarcinoma Folicular , Neoplasias da Glândula Tireoide , Humanos , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/patologia , Gotículas Lipídicas/metabolismo , Perilipina-2 , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Glândula Tireoide/patologia , Serina-Treonina Quinases TOR/metabolismo
8.
Opt Express ; 31(17): 28503-28514, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710903

RESUMO

Adaptive optics (AO) techniques enhance the capability of optical microscopy through precise control of wavefront modulations to compensate phase aberrations and improves image quality. However, the aberration correction is often limited due to the lack of dynamic range in existing calibration methods, such as interferometry or Shack-Hartmann (SH) wavefront sensors. Here, we use deflectometry (DF) as a calibration method for a deformable mirror (DM) to extend the available range of aberration correction. We characterised the dynamic range and accuracy of the DF-based calibration of DMs depending on the spatial frequency of the test pattern used in DF. We also demonstrated the capability of large magnitude phase control for remote-focusing over a range larger than was possible with SH sensing.

9.
Analyst ; 148(15): 3574-3583, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403759

RESUMO

A line illumination Raman microscope extracts the underlying spatial and spectral information of a sample, typically a few hundred times faster than raster scanning. This makes it possible to measure a wide range of biological samples such as cells and tissues - that only allow modest intensity illumination to prevent potential damage - within feasible time frame. However, a non-uniform intensity distribution of laser line illumination may induce some artifacts in the data and lower the accuracy of machine learning models trained to predict sample class membership. Here, using cancerous and normal human thyroid follicular epithelial cell lines, FTC-133 and Nthy-ori 3-1 lines, whose Raman spectral difference is not so large, we show that the standard pre-processing of spectral analyses widely used for raster scanning microscopes introduced some artifacts. To address this issue, we proposed a detrending scheme based on random forest regression, a nonparametric model-free machine learning algorithm, combined with a position-dependent wavenumber calibration scheme along the illumination line. It was shown that the detrending scheme minimizes the artifactual biases arising from non-uniform laser sources and significantly enhances the differentiability of the sample states, i.e., cancerous or normal epithelial cells, compared to the standard pre-processing scheme.


Assuntos
Iluminação , Microscopia , Humanos , Luz , Calibragem , Algoritmos , Análise Espectral Raman
10.
J Am Chem Soc ; 144(43): 19651-19667, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36216344

RESUMO

In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.


Assuntos
Análise Espectral Raman , Vibração , Análise Espectral Raman/métodos , Proteínas , Corantes Fluorescentes , Biologia
11.
Anal Chem ; 94(28): 10019-10026, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786862

RESUMO

Simultaneous observation of drug distribution at the effector site and subsequent cell response are essential in the drug development process. However, few studies have visualized the drug itself and biomolecular interactions in living cells. Here, we used label-free Raman microscopy to investigate drug-induced cytotoxicity and visualize drug uptake and subcellular localization by its specific molecular fingerprint. A redox-sensitive Raman microscope detected the decrease of reduced cytochrome c (cyt c) after Actinomycin D (ActD) treatment in a time-dependent and dose-dependent format. Immunofluorescence staining of cyt c suggested that the release of cyt c was not the major cause. Combining Raman microscopy with conventional biological methods, we reported that the oxidization of cyt c is an early cytotoxicity marker prior to the release of cyt c. Moreover, as the spectral properties of ActD are sensitive to the surrounding environment, subcellular localization of ActD was visualized sensitively by the weak autofluorescence, and the intercalation of ActD into DNA was detected by shifted Raman peaks, allowing for parallel observation of drug uptake and the mechanism of action. In this research, we achieved simultaneous observation of cytotoxicity and cellular drug uptake by Raman microscopy, which could facilitate a precise understanding of pharmacological effects and predict potential drug toxicity in the future.


Assuntos
Citocromos c , Análise Espectral Raman , Dactinomicina/farmacologia , Microscopia , Imagem Óptica , Análise Espectral Raman/métodos
12.
Opt Express ; 30(8): 13825-13838, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472987

RESUMO

Image scanning microscopy (ISM) overcomes the trade-off between spatial resolution and signal volume in confocal microscopy by rearranging the signal distribution on a two-dimensional detector array to achieve a spatial resolution close to the theoretical limit achievable by infinitesimal pinhole detection without sacrificing the detected signal intensity. In this paper, we improved the spatial resolution of ISM in three dimensions by exploiting saturated excitation (SAX) of fluorescence. We theoretically investigated the imaging properties of ISM, when the fluorescence signals are nonlinearly induced by SAX, and show combined SAX-ISM fluorescence imaging to demonstrate the improvement of the spatial resolution in three dimensions. In addition, we confirmed that the SNR of SAX-ISM imaging of fluorescent beads and biological samples, which is one of the challenges in conventional SAX microscopy, was improved.


Assuntos
Imagem Óptica , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Cintilografia
13.
J Microsc ; 288(2): 117-129, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34028848

RESUMO

We improved the three-dimensional spatial resolution of laser scanning transmission microscopy by exploiting the saturated absorption of dye molecules. The saturated absorption is induced by the high-intensity light irradiation and localises the signal within the centre of the focal spot. Our numerical calculation indicates that the spatial resolution in transmission imaging is significantly improved for both lateral and axial directions using nonlinear transmitted signals induced by saturated absorption. We experimentally demonstrated the improvement of the three-dimensional resolution by observing fine structures of stained rat kidney tissues, which were not able to be visualised by conventional laser scanning transmission microscopy.


Confocal laser scanning microscopy is a powerful technique for three-dimensional imaging to study structures in a specimen. The use of confocal pinhole provides three-dimensional spatial resolution in various types of optical microscopes, such as fluorescence, reflection and scattering. However, in transmission microscopy, the confocal pinhole cannot provide the same effect because the spatial information on the optical axial is not transferred in the imaging system. Therefore, the three-dimensional distribution of light absorbers cannot be observed by laser scanning transmission microscopy. In this paper, we propose the use of saturated absorption to image the three-dimensional distribution of light absorbers in a sample by laser scanning transmission microscopy. The saturated absorption is induced by the high-intensity light irradiation and occurs prominently at the centre of a focal spot. The information of the saturated absorption signal within the focal spot is transferred to the transmitted light, providing the capability of optical sectioning in transmission imaging. In our research, we theoretically and experimentally confirmed that light absorption by dye molecules is saturable at the high illumination intensity, and the saturated absorption signal can be extracted by harmonic demodulation. We obtained the images of a stained rat kidney tissue by selectively detecting the nonlinear transmission signals induced by saturable absorption of the dye molecules. We confirmed the high depth discrimination capability of our technique clearly visualised the fine structures in the specimen that cannot be observed by a conventional laser scanning absorption microscope.


Assuntos
Lasers , Animais , Ratos , Fenômenos Químicos , Microscopia Confocal
14.
J Microsc ; 288(2): 106-116, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33128278

RESUMO

Adaptive optics is being applied widely to a range of microscopies in order to improve imaging quality in the presence of specimen-induced aberrations. We present here the first implementation of wavefront-sensorless adaptive optics for a laser-free, aperture correlation, spinning disk microscope. This widefield method provides confocal-like optical sectioning through use of a patterned disk in the illumination and detection paths. Like other high-resolution microscopes, its operation is compromised by aberrations due to refractive index mismatch and variations within the specimen. Correction of such aberrations shows improved signal level, contrast and resolution.


Assuntos
Microscopia , Óptica e Fotônica , Refratometria , Lasers
15.
Opt Lett ; 46(1): 37-40, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362007

RESUMO

We demonstrate hyperspectral imaging by visible-wavelength two-photon excitation microscopy using line illumination and slit-confocal detection. A femtosecond pulsed laser light at 530 nm was used for the simultaneous excitation of fluorescent proteins with different emission wavelengths. The use of line illumination enabled efficient detection of hyperspectral images and achieved simultaneous detection of three fluorescence spectra in the observation of living HeLa cells with an exposure time of 1 ms per line, which is equivalent to about 2 µs per pixel in point scanning, with 160 data points per spectrum. On combining linear spectral unmixing techniques, localization of fluorescent probes in the cells was achieved. A theoretical investigation of the imaging property revealed high-depth discrimination property attained through the combination of nonlinear excitation and slit detection.

16.
Analyst ; 146(12): 4087-4094, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34060547

RESUMO

We demonstrate a method for label-free monitoring of hydrolytic activity of crystalline-chitin-degrading enzyme, chitinase, by means of Raman spectroscopy. We found that crystalline chitin exhibited a characteristic Raman peak at 2995 cm-1, which did not appear in the reaction product, N,N'-diacetylchitobiose. We used this Raman peak as a marker of crystalline chitin degradation to monitor the hydrolytic activity of chitinase. When the crystalline chitin suspension and chitinase were mixed together, the peak intensity of crystalline chitin at 2995 cm-1 was linearly decreased depending on incubation time. The decrease in peak intensity was inversely correlated with the increase in the amount of released N,N'-diacetylchitobiose, which was measured by conventional colorimetric assay with alkaline ferricyanide. Our result, presented here, provides a new method for simple, in situ, and label-free monitoring of enzymatic activity of chitinase.


Assuntos
Quitinases , Quitina , Hidrólise , Análise Espectral Raman , Suspensões
17.
Analyst ; 146(7): 2307-2312, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33620044

RESUMO

The use of infrared (IR) photothermal microscopy (IR-PTM) is emerging for imaging chemical substances in various samples. In this research, we demonstrated the use of a nitrile group as a vibrational tag to image target molecules in the low water-background region. We performed IR photothermal imaging of trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP) in cells and confirmed the high spatial resolution by photothermal detection using visible light as a probe beam. We imaged FCCP-treated HeLa cells and confirmed that the photothermal signal was indeed produced from the vibrational tag in lipid droplets. We also compared the results with nitrile imaging by stimulated Raman scattering (SRS) microscopy. From both the calculated and experimental results, IR-PTM demonstrated a signal-to-noise ratio (SNR) several tens of times better than that of SRS microscopy on the basis of the same power input.


Assuntos
Microscopia , Nitrilas , Células HeLa , Humanos , Análise Espectral Raman , Vibração
18.
J Chem Phys ; 155(14): 144202, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654313

RESUMO

In this article, we report the use of randomly structured light illumination for chemical imaging of molecular distribution based on Raman microscopy with improved image resolution. Random structured basis images generated from temporal and spectral characteristics of the measured Raman signatures were superposed to perform structured illumination microscopy (SIM) with the blind-SIM algorithm. For experimental validation, Raman signatures corresponding to Rhodamine 6G (R6G) in the waveband of 730-760 nm and Raman shift in the range of 1096-1634 cm-1 were extracted and reconstructed to build images of R6G. The results confirm improved image resolution using the concept and hints at super-resolution by almost twice better than the diffraction-limit.

19.
Nano Lett ; 20(12): 8951-8958, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33186047

RESUMO

We investigate label-free measurement of molecular distribution by super-resolved Raman microscopy using surface plasmon (SP) localization. Localized SP was formed with plasmonic nanopost arrays (PNAs) for measurement of the molecular distribution in HeLa cells. Compared with conventional Raman microscopy on gold thin films, PNAs induce a localized near-field, which allows for the enhancement of the peak signal-to-noise ratio by as much as 4.5 dB in the Raman shifts. Super-resolved distributions of aromatic amino acids and lipids (C-C stretching and C-H2 twist mode) as targets in HeLa cells were obtained after image reconstruction. Results show almost 4-fold improvement on average in the lateral precision over conventional diffraction-limited Raman microscopy images. Combined with axial imaging in an evanescent field, the results suggest an improvement in optical resolution due to superlocalized light volume by more than an order of magnitude over that of conventional diffraction-limited Raman microscopy.

20.
Anal Chem ; 91(5): 3254-3262, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698014

RESUMO

Intracellular pH is one of the key factors for understanding various biological processes in biological cells. Plasmonic gold and silver nanoparticles (NPs) have been extensively studied for surface-enhanced Raman scattering (SERS) applications for pH sensing as a local pH probe in a living cell. However, the SERS performance of NPs depends on material, size, and shape, which can be controlled by chemical synthesis. Here, we synthesized 18 types of gold and silver NPs with different morphologies such as sphere, rod, flower, star, core/shell, hollow, octahedra, core/satellites, and chainlike aggregates, and quantitatively compared their SERS performance for pH sensing. The SERS intensity from the most commonly utilized SERS probe molecule ( para-mercaptobenzoic acid, p-MBA) for pH sensing was measured at the single nanoparticle level under the same measurement parameters such as low laser power (0.5 mW/µm2), short integration time (100 ms) at wavelengths of 405, 488, 532, 584, 676, and 785 nm. In our measurement, the Ag chain, Ag core/satellites, Ag@Au core/satellites, and Au core/satellites nanoassemblies showed efficient pH sensing at the single particle level. By using p-MBA-conjugated Au@Ag core/satellites, we performed time-lapse pH measurements during apoptosis of HeLa cells. These experimental results confirmed that the pH measurement using p-MBA-conjugated Au@Ag core/satellites can be applied for long-term measurements of intracellular pH during cellular events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA