Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
EMBO J ; 39(8): e104120, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32128853

RESUMO

Protein prenylation is essential for many cellular processes including signal transduction, cytoskeletal reorganization, and membrane trafficking. Here, we identify a novel type of protein prenyltransferase, which we named geranylgeranyltransferase type-III (GGTase-III). GGTase-III consists of prenyltransferase alpha subunit repeat containing 1 (PTAR1) and the ß subunit of RabGGTase. Using a biotinylated geranylgeranyl analogue, we identified the Golgi SNARE protein Ykt6 as a substrate of GGTase-III. GGTase-III transfers a geranylgeranyl group to mono-farnesylated Ykt6, generating doubly prenylated Ykt6. The crystal structure of GGTase-III in complex with Ykt6 provides structural basis for Ykt6 double prenylation. In GGTase-III-deficient cells, Ykt6 remained in a singly prenylated form, and the Golgi SNARE complex assembly was severely impaired. Consequently, the Golgi apparatus was structurally disorganized, and intra-Golgi protein trafficking was delayed. Our findings reveal a fourth type of protein prenyltransferase that generates geranylgeranyl-farnesyl Ykt6. Double prenylation of Ykt6 is essential for the structural and functional organization of the Golgi apparatus.


Assuntos
Alquil e Aril Transferases/metabolismo , Dimetilaliltranstransferase/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Animais , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Complexo de Golgi/metabolismo , Humanos , Masculino , Fusão de Membrana , Ligação Proteica , Multimerização Proteica , Prenilação de Proteína , Transporte Proteico , Proteínas R-SNARE/genética , Ratos , Ratos Wistar
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397806

RESUMO

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1-ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4-Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22-MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1-ADAM22-MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


Assuntos
Proteínas ADAM/genética , Epilepsia/genética , Guanilato Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Epilepsia/patologia , Epilepsia/prevenção & controle , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Moléculas de Adesão de Célula Nervosa/genética , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Superfamília Shaker de Canais de Potássio/genética
3.
Biophys J ; 120(16): 3355-3362, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34242591

RESUMO

TAK1-binding protein 2 (TAB2) has generally been considered to bind specifically to K63-linked polyubiquitin chains via its C-terminal Npl4 zinc-finger (NZF) domain. However, a recent study showed that the NZF domain of TAB2 (TAB2-NZF) could also interact with K6-linked polyubiquitin chains. Here, we report the crystal structure of TAB2-NZF in complex with K6-linked diubiquitin (K6-Ub2) at 1.99-Å resolution. TAB2-NZF simultaneously interacts with the distal and proximal ubiquitin moieties of K6-Ub2. By comparing the structures of TAB2-NZF in complex with K6-Ub2 and with K63-linked diubiquitin (K63-Ub2), we reveal that the binding mechanism of TAB2-NZF with K6-Ub2 is similar to that with K63-Ub2, except for the flexible C-terminal region of the distal ubiquitin. Therefore, we conclude that the C-terminal flexibility of the distal ubiquitin contributes to the dual specificity of TAB2-NZF toward K6- and K63-linked ubiquitin chains. This study provides important insights into the functions of K6-linked ubiquitin chains, which are currently unclear.


Assuntos
Poliubiquitina , Dedos de Zinco , Modelos Moleculares , Poliubiquitina/metabolismo , Ligação Proteica , Ubiquitina/metabolismo
4.
Cell Mol Life Sci ; 77(2): 267-274, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31432233

RESUMO

Epilepsy is one of the most common brain disorders, which can be caused by abnormal synaptic transmissions. Many epilepsy-related mutations have been identified in synaptic ion channels, which are main targets for current antiepileptic drugs. One of the novel potential targets for therapy of epilepsy is a class of non-ion channel-type epilepsy-related proteins. The leucine-rich repeat glioma-inactivated protein 1 (LGI1) is a neuronal secreted protein, and has been extensively studied as a product of a causative gene for autosomal dominant lateral temporal lobe epilepsy (ADLTE; also known as autosomal dominant partial epilepsy with auditory features [ADPEAF]). At least 43 mutations of LGI1 have been found in ADLTE families. Additionally, autoantibodies against LGI1 in limbic encephalitis are associated with amnesia, seizures, and cognitive dysfunction. Although the relationship of LGI1 with synaptic transmission and synaptic disorders has been studied genetically, biochemically, and clinically, the structural mechanism of LGI1 remained largely unknown until recently. In this review, we introduce insights into pathogenic mechanisms of LGI1 from recent structural studies on LGI1 and its receptor, ADAM22. We also discuss the mechanism for pathogenesis of autoantibodies against LGI1, and the potential of chemical correctors as novel drugs for epilepsy, with structural aspects of LGI1-ADAM22.


Assuntos
Proteínas ADAM/genética , Epilepsia/genética , Epilepsia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Autoanticorpos/metabolismo , Humanos , Mutação/genética
5.
Nucleic Acids Res ; 47(7): 3784-3794, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753618

RESUMO

Cockayne syndrome group B (CSB, also known as ERCC6) protein is involved in many DNA repair processes and essential for transcription-coupled repair (TCR). The central region of CSB has the helicase motif, whereas the C-terminal region contains important regulatory elements for repair of UV- and oxidative stress-induced damages and double-strand breaks (DSBs). A previous study suggested that a small part (∼30 residues) within this region was responsible for binding to ubiquitin (Ub). Here, we show that the Ub-binding of CSB requires a larger part of CSB, which was previously identified as a winged-helix domain (WHD) and is involved in the recruitment of CSB to DSBs. We also present the crystal structure of CSB WHD in complex with Ub. CSB WHD folds as a single globular domain, defining a class of Ub-binding domains (UBDs) different from 23 UBD classes identified so far. The second α-helix and C-terminal extremity of CSB WHD interact with Ub. Together with structure-guided mutational analysis, we identified the residues critical for the binding to Ub. CSB mutants defective in the Ub binding reduced repair of UV-induced damage. This study supports the notion that DSB repair and TCR may be associated with the Ub-binding of CSB.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/química , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a Poli-ADP-Ribose/química , Ubiquitina/química , Ubiquitinas/química , Fatores de Transcrição Winged-Helix/química , Sequência de Aminoácidos/genética , Sobrevivência Celular , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Conformação Proteica em alfa-Hélice/genética , Ubiquitina/genética , Ubiquitinas/genética , Raios Ultravioleta , Fatores de Transcrição Winged-Helix/genética
6.
Biochem Biophys Res Commun ; 524(1): 1-7, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31898971

RESUMO

The tumor suppressor CYLD negatively regulates polyubiquitination-dependent cellular signaling such as nuclear factor (NF)-κB signaling. In addition to CYLD, multiple deubiquitinating enzymes (DUBs) are also involved in the regulation of this signaling pathway, and distinct role of CYLD is yet to be clarified. Here, we identified a small chemical named Subquinocin that inhibited the DUB activity of recombinant CYLD using a wheat cell-free protein synthesis and an AlphaScreen technology. In cells, Subquinocin increased the polyubiquitination of NEMO and RIP1 and enhanced NF-κB activation. Modeling and mutation analyses indicated that Subquinocin interacted with Y940 in CYLD, which locates close to catalytic center of CYLD, and is conserved among the USP-family DUBs. Further biochemical evaluation revealed that Subquinocin inhibited USP-family DUBs, but not other family DUBs including OTU. Although Subquinocin showed a broad specificity toward USP-family DUBs, the inhibitory effect of Subquinocin on NF-κB signaling was negligible in CYLD-KO cells, indicating that CYLD is a major target of Subquinocin on the suppression of NF-κB signaling. In conclusion, Subquinocin identified here is a useful tool to analyze the signal transduction mediated by USP-family DUBs.


Assuntos
Antineoplásicos/química , Enzima Desubiquitinante CYLD/antagonistas & inibidores , Inibidores Enzimáticos/química , NF-kappa B/metabolismo , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Glutationa Transferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
7.
Nature ; 474(7350): 235-8, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21562494

RESUMO

Protein translocation across the bacterial membrane, mediated by the secretory translocon SecYEG and the SecA ATPase, is enhanced by proton motive force and membrane-integrated SecDF, which associates with SecYEG. The role of SecDF has remained unclear, although it is proposed to function in later stages of translocation as well as in membrane protein biogenesis. Here, we determined the crystal structure of Thermus thermophilus SecDF at 3.3 Å resolution, revealing a pseudo-symmetrical, 12-helix transmembrane domain belonging to the RND superfamily and two major periplasmic domains, P1 and P4. Higher-resolution analysis of the periplasmic domains suggested that P1, which binds an unfolded protein, undergoes functionally important conformational changes. In vitro analyses identified an ATP-independent step of protein translocation that requires both SecDF and proton motive force. Electrophysiological analyses revealed that SecDF conducts protons in a manner dependent on pH and the presence of an unfolded protein, with conserved Asp and Arg residues at the transmembrane interface between SecD and SecF playing essential roles in the movements of protons and preproteins. Therefore, we propose that SecDF functions as a membrane-integrated chaperone, powered by proton motive force, to achieve ATP-independent protein translocation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Thermus thermophilus/química , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Asparagina/metabolismo , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Biológicos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Periplasma/química , Periplasma/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Desdobramento de Proteína , Força Próton-Motriz , Eletricidade Estática , Relação Estrutura-Atividade , Thermus thermophilus/citologia
9.
Retrovirology ; 11: 38, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24886641

RESUMO

BACKGROUND: Human Leukocyte Antigen (HLA) class I restricted Cytotoxic T Lymphocytes (CTLs) exert substantial evolutionary pressure on HIV-1, as evidenced by the reproducible selection of HLA-restricted immune escape mutations in the viral genome. An escape mutation from tyrosine to phenylalanine at the 135th amino acid (Y135F) of the HIV-1 nef gene is frequently observed in patients with HLA-A*24:02, an HLA Class I allele expressed in ~70% of Japanese persons. The selection of CTL escape mutations could theoretically result in the de novo creation of novel epitopes, however, the extent to which such dynamic "CTL epitope switching" occurs in HIV-1 remains incompletely known. RESULTS: Two overlapping epitopes in HIV-1 nef, Nef126-10 and Nef134-10, elicit the most frequent CTL responses restricted by HLA-A*24:02. Thirty-five of 46 (76%) HLA-A*24:02-positive patients harbored the Y135F mutation in their plasma HIV-1 RNA. Nef codon 135 plays a crucial role in both epitopes, as it represents the C-terminal anchor for Nef126-10 and the N-terminal anchor for Nef134-10. While the majority of patients with 135F exhibited CTL responses to Nef126-10, none harboring the "wild-type" (global HIV-1 subtype B consensus) Y135 did so, suggesting that Nef126-10 is not efficiently presented in persons harboring Y135. Consistent with this, peptide binding and limiting dilution experiments confirmed F, but not Y, as a suitable C-terminal anchor for HLA-A*24:02. Moreover, experiments utilizing antigen specific CTL clones to recognize endogenously-expressed peptides with or without Y135F indicated that this mutation disrupted the antigen expression of Nef134-10. Critically, the selection of Y135F also launched the expression of Nef126-10, indicating that the latter epitope is created as a result of escape within the former. CONCLUSIONS: Our data represent the first example of the de novo creation of a novel overlapping CTL epitope as a direct result of HLA-driven immune escape in a neighboring epitope. The robust targeting of Nef126-10 following transmission (or in vivo selection) of HIV-1 containing Y135F may explain in part the previously reported stable plasma viral loads over time in the Japanese population, despite the high prevalence of both HLA-A*24:02 and Nef-Y135F in circulating HIV-1 sequences.


Assuntos
Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T Citotóxicos/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Linhagem Celular , Epitopos de Linfócito T/genética , Células HEK293 , HIV-1/genética , Antígeno HLA-A24/genética , Antígeno HLA-A24/imunologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Mutação , RNA Viral/genética , RNA Viral/imunologia , Carga Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
10.
Nature ; 455(7211): 358-62, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18758443

RESUMO

Deubiquitinating enzymes (DUBs) remove ubiquitin from conjugated substrates to regulate various cellular processes. The Zn(2+)-dependent DUBs AMSH and AMSH-LP regulate receptor trafficking by specifically cleaving Lys 63-linked polyubiquitin chains from internalized receptors. Here we report the crystal structures of the human AMSH-LP DUB domain alone and in complex with a Lys 63-linked di-ubiquitin at 1.2 A and 1.6 A resolutions, respectively. The AMSH-LP DUB domain consists of a Zn(2+)-coordinating catalytic core and two characteristic insertions, Ins-1 and Ins-2. The distal ubiquitin interacts with Ins-1 and the core, whereas the proximal ubiquitin interacts with Ins-2 and the core. The core and Ins-1 form a catalytic groove that accommodates the Lys 63 side chain of the proximal ubiquitin and the isopeptide-linked carboxy-terminal tail of the distal ubiquitin. This is the first reported structure of a DUB in complex with an isopeptide-linked ubiquitin chain, which reveals the mechanism for Lys 63-linkage-specific deubiquitination by AMSH family members.


Assuntos
Lisina/metabolismo , Poliubiquitina/química , Poliubiquitina/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Animais , Catálise , Sequência Conservada , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Cinética , Camundongos , Modelos Moleculares , Peptídeo Hidrolases , Poliubiquitina/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina Tiolesterase/genética
11.
Nature ; 455(7215): 988-91, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18923527

RESUMO

Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, gamma- and beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbeta from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-A-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbeta structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA-SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Thermus thermophilus/química , Thermus thermophilus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sítios de Ligação , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Mathanococcus/química , Mathanococcus/enzimologia , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Thermus thermophilus/genética
12.
Proc Natl Acad Sci U S A ; 108(51): 20520-5, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139374

RESUMO

The linear ubiquitin chain assembly complex (LUBAC) is a key nuclear factor-κB (NF-κB) pathway component that produces linear polyubiquitin chains. The HOIL-1L subunit of LUBAC has been shown to bind linear chains; however, detailed structural and functional analyses on the binding between LUBAC and linear chains have not been performed. In this study, we found that the Npl4 zinc finger (NZF) domain of HOIL-1L specifically binds linear polyubiquitin chains and determined the crystal structure of the HOIL-1L NZF domain in complex with linear diubiquitin at 1.7-Å resolution. The HOIL-1L NZF domain consists of a zinc-coordinating "NZF core" region and an additional α-helical "NZF tail" region. The HOIL-1L NZF core binds both the canonical Ile44-centered hydrophobic surface on the distal ubiquitin and a Phe4-centered hydrophobic patch on the proximal ubiquitin, representing a mechanism for the specific recognition of linear chains. The NZF tail binds the proximal ubiquitin to enhance the binding affinity. These recognition mechanisms were supported by the accompanying in vitro and in vivo structure-based mutagenesis experiments.


Assuntos
Proteínas de Transporte/química , Proteínas Nucleares/química , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X/métodos , Humanos , Camundongos , Conformação Molecular , Dados de Sequência Molecular , NF-kappa B/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície/métodos , Fatores de Transcrição
13.
J Biol Chem ; 287(31): 25860-8, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22679021

RESUMO

UBC13 is the only known E2 ubiquitin (Ub)-conjugating enzyme that produces Lys-63-linked Ub chain with its cofactor E2 variant UEV1a or MMS2. Lys-63-linked ubiquitination is crucial for recruitment of DNA repair and damage response molecules to sites of DNA double-strand breaks (DSBs). A deubiquitinating enzyme OTUB1 suppresses Lys-63-linked ubiquitination of chromatin surrounding DSBs by binding UBC13 to inhibit its E2 activity independently of the isopeptidase activity. OTUB1 strongly suppresses UBC13-dependent Lys-63-linked tri-Ub production, whereas it allows di-Ub production in vitro. The mechanism of this non-canonical OTUB1-mediated inhibition of ubiquitination remains to be elucidated. Furthermore, the atomic level information of the interaction between human OTUB1 and UBC13 has not been reported. Here, we determined the crystal structure of human OTUB1 in complex with human UBC13 and MMS2 at 3.15 Å resolution. The presented atomic-level interactions were confirmed by surface-plasmon resonance spectroscopy with structure-based mutagenesis. The designed OTUB1 mutants cannot inhibit Lys-63-linked Ub chain formation in vitro and histone ubiquitination and 53BP1 assembly around DSB sites in vivo. Finally, we propose a model for how capping of di-Ub by the OTUB1-UBC13-MMS2/UEV1a complex efficiently inhibits Lys-63-linked tri-Ub formation.


Assuntos
Cisteína Endopeptidases/química , Ligases/química , Lisina/metabolismo , Poliubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Dano ao DNA , Enzimas Desubiquitinantes , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Transporte Proteico , Propriedades de Superfície , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
14.
EMBO J ; 28(16): 2461-8, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19536136

RESUMO

RAP80 has a key role in the recruitment of the Abraxas-BRCC36-BRCA1-BARD1 complex to DNA-damage foci for DNA repair through specific recognition of Lys 63-linked polyubiquitinated proteins by its tandem ubiquitin-interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80-UIM1-UIM2) in complex with Lys 63-linked di-ubiquitin at 2.2 A resolution. The two UIMs, UIM1 and UIM2, and the alpha-helical inter-UIM region together form a continuous 60 A-long alpha-helix. UIM1 and UIM2 bind to the proximal and distal ubiquitin moieties, respectively. Both UIM1 and UIM2 of RAP80 recognize an Ile 44-centered hydrophobic patch on ubiquitin but neither UIM interacts with the Lys 63-linked isopeptide bond. Our structure suggests that the inter-UIM region forms a 12 A-long alpha-helix that ensures that the UIMs are arranged to enable specific binding of Lys 63-linked di-ubiquitin. This was confirmed by pull-down analyses using RAP80-UIM1-UIM2 mutants of various length inter-UIM regions. Further, we show that the Epsin1 tandem UIM, which has an inter-UIM region similar to that of RAP80-UIM1-UIM2, also selectively binds Lys 63-linked di-ubiquitin.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Lisina/metabolismo , Poliubiquitina/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA , Chaperonas de Histonas , Lisina/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/química , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Fatores de Transcrição/genética
15.
EMBO J ; 28(24): 3903-9, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19927120

RESUMO

TAB2 and TAB3 activate the Jun N-terminal kinase and nuclear factor-kappaB pathways through the specific recognition of Lys 63-linked polyubiquitin chains by its Npl4 zinc-finger (NZF) domain. Here we report crystal structures of the TAB2 and TAB3 NZF domains in complex with Lys 63-linked diubiquitin at 1.18 and 1.40 A resolutions, respectively. Both NZF domains bind to the distal ubiquitin through a conserved Thr-Phe dipeptide that has been shown to be important for the interaction of the NZF domain of Npl4 with monoubiquitin. In contrast, a surface specific to TAB2 and TAB3 binds the proximal ubiquitin. Both the distal and proximal binding sites of the TAB2 and TAB3 NZF domains recognize the Ile 44-centred hydrophobic patch on ubiquitin but do not interact with the Lys 63-linked isopeptide bond. Mutagenesis experiments show that both binding sites are required to enable binding of Lys 63-linked diubiquitin. We therefore propose a mechanism for the recognition of Lys 63-linked polyubiquitin chains by TAB2 and TAB3 NZF domains in which diubiquitin units are specifically recognized by a single NZF domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Poliubiquitina/química , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lisina/química , Camundongos , Modelos Moleculares , NF-kappa B/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ubiquitina/química , Dedos de Zinco
16.
EMBO J ; 28(21): 3353-65, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19745807

RESUMO

The CCA-adding enzyme synthesizes the CCA sequence at the 3' end of tRNA without a nucleic acid template. The crystal structures of class II Thermotoga maritima CCA-adding enzyme and its complexes with CTP or ATP were determined. The structure-based replacement of both the catalytic heads and nucleobase-interacting neck domains of the phylogenetically closely related Aquifex aeolicus A-adding enzyme by the corresponding domains of the T. maritima CCA-adding enzyme allowed the A-adding enzyme to add CCA in vivo and in vitro. However, the replacement of only the catalytic head domain did not allow the A-adding enzyme to add CCA, and the enzyme exhibited (A, C)-adding activity. We identified the region in the neck domain that prevents (A, C)-adding activity and defines the number of nucleotide incorporations and the specificity for correct CCA addition. We also identified the region in the head domain that defines the terminal A addition after CC addition. The results collectively suggest that, in the class II CCA-adding enzyme, the head and neck domains collaboratively and dynamically define the number of nucleotide additions and the specificity of nucleotide selection.


Assuntos
Trifosfato de Adenosina/metabolismo , Citidina Trifosfato/metabolismo , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , Thermotoga maritima/enzimologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Bactérias/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Citidina Trifosfato/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , RNA Nucleotidiltransferases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
Nature ; 448(7157): 1072-5, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17700703

RESUMO

The magnesium ion Mg2+ is a vital element involved in numerous physiological processes. Mg2+ has the largest hydrated radius among all cations, whereas its ionic radius is the smallest. It remains obscure how Mg2+ transporters selectively recognize and dehydrate the large, fully hydrated Mg2+ cation for transport. Recently the crystal structures of the CorA Mg2+ transporter were reported. The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains, and human homologues have been functionally characterized and suggested to be involved in magnesium homeostasis. However, the MgtE transporters have not been thoroughly characterized. Here we determine the crystal structures of the full-length Thermus thermophilus MgtE at 3.5 A resolution, and of the cytosolic domain in the presence and absence of Mg2+ at 2.3 A and 3.9 A resolutions, respectively. The transporter adopts a homodimeric architecture, consisting of the carboxy-terminal five transmembrane domains and the amino-terminal cytosolic domains, which are composed of the superhelical N domain and tandemly repeated cystathionine-beta-synthase domains. A solvent-accessible pore nearly traverses the transmembrane domains, with one potential Mg2+ bound to the conserved Asp 432 within the pore. The transmembrane (TM)5 helices from both subunits close the pore through interactions with the 'connecting helices', which connect the cystathionine-beta-synthase and transmembrane domains. Four putative Mg2+ ions are bound at the interface between the connecting helices and the other domains, and this may lock the closed conformation of the pore. A structural comparison of the two states of the cytosolic domains showed the Mg2+-dependent movement of the connecting helices, which might reorganize the transmembrane helices to open the pore. These findings suggest a homeostasis mechanism, in which Mg2+ bound between cytosolic domains regulates Mg2+ flux by sensing the intracellular Mg2+ concentration. Whether this presumed regulation controls gating of an ion channel or opening of a secondary active transporter remains to be determined.


Assuntos
Antiporters/química , Antiporters/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Magnésio/metabolismo , Thermus thermophilus/química , Antiporters/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Homeostase , Magnésio/química , Modelos Biológicos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Thermus thermophilus/genética
18.
Commun Biol ; 6(1): 190, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36808185

RESUMO

The K intermediate of proton pumping bacteriorhodopsin is the first intermediate generated after isomerization of retinal to the 13-cis form. Although various structures have been reported for the K intermediate until now, these differ from each other, especially in terms of the conformation of the retinal chromophore and its interaction with surrounding residues. We report here an accurate X-ray crystallographic analysis of the K structure. The polyene chain of 13-cis retinal is observed to be S-shaped. The side chain of Lys216, which is covalently bound to retinal via the Schiff-base linkage, interacts with residues, Asp85 and Thr89. In addition, the Nζ-H of the protonated Schiff-base linkage interacts with a residue, Asp212 and a water molecule, W402. Based on quantum chemical calculations for this K structure, we examine the stabilizing factors of distorted conformation of retinal and propose a relaxation manner to the next L intermediate.


Assuntos
Bacteriorodopsinas , Bacteriorodopsinas/química , Modelos Moleculares , Bombas de Próton/química , Conformação Molecular , Transporte de Íons
19.
Commun Chem ; 6(1): 190, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689761

RESUMO

Iron-sulfur clusters are prosthetic groups of proteins involved in various biological processes. However, details of the immature state of the iron-sulfur cluster into proteins have not yet been elucidated. We report here the first structural analysis of the Zn-containing form of a Rieske-type iron-sulfur protein, PetA, from Thermochromatium tepidum (TtPetA) by X-ray crystallography and small-angle X-ray scattering analysis. The Zn-containing form of TtPetA was indicated to be a dimer in solution. The zinc ion adopts a regular tetra-coordination with two chloride ions and two cysteine residues. Only a histidine residue in the cluster-binding site exhibited a conformational difference from the [2Fe-2S] containing form. The Zn-containing structure indicates that the conformation of the cluster binding site is already constructed and stabilized before insertion of [2Fe-2S]. The binding mode of ZnCl2, similar to the [2Fe-2S] cluster, suggests that the zinc ions might be involved in the insertion of the [2Fe-2S] cluster.

20.
Nature ; 443(7114): 956-60, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17051158

RESUMO

CCA-adding polymerase matures the essential 3'-CCA terminus of transfer RNA without any nucleic-acid template. However, it remains unclear how the correct nucleotide triphosphate is selected in each reaction step and how the polymerization is driven by the protein and RNA dynamics. Here we present complete sequential snapshots of six complex structures of CCA-adding enzyme and four distinct RNA substrates with and without CTP (cytosine triphosphate) or ATP (adenosine triphosphate). The CCA-lacking RNA stem extends by one base pair to force the discriminator nucleoside into the active-site pocket, and then tracks back after incorporation of the first cytosine monophosphate (CMP). Accommodation of the second CTP clamps the catalytic cleft, inducing a reorientation of the turn, which flips C74 to allow CMP to be accepted. In contrast, after the second CMP is added, the polymerase and RNA primer are locked in the closed state, which directs the subsequent A addition. Between the CTP- and ATP-binding stages, the side-chain conformation of Arg 224 changes markedly; this is controlled by the global motion of the enzyme and position of the primer terminus, and is likely to achieve the CTP/ATP discrimination, depending on the polymerization stage. Throughout the CCA-adding reaction, the enzyme tail domain firmly anchors the TPsiC-loop of the tRNA, which ensures accurate polymerization and termination.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Monofosfato de Citidina/metabolismo , Citidina Trifosfato/metabolismo , Difosfatos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/metabolismo , Relação Estrutura-Atividade , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA