Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2216632120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011193

RESUMO

Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina/genética , Citocininas/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas
2.
J Virol ; 97(9): e0046323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668368

RESUMO

Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.


Assuntos
Gentiana , Nicotiana , Tumores de Planta , Vírus de Plantas , Fatores de Virulência , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Nicotiana/metabolismo , Nicotiana/virologia , Xilema/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Folhas de Planta , Tumores de Planta/virologia , Transdução de Sinais , Fatores de Processamento de RNA
3.
New Phytol ; 242(3): 1146-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462819

RESUMO

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Transativadores/metabolismo , Xilema/metabolismo
4.
Plant Cell ; 33(8): 2618-2636, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059919

RESUMO

In plants, vascular stem cells located in the cambium continuously undergo self-renewal and differentiation during secondary growth. Recent advancements in cell sorting techniques have enabled access to the transcriptional regulatory framework of cambial cells. However, mechanisms underlying the robust control of vascular stem cells remain unclear. Here, we identified a new cambium-related regulatory module through co-expression network analysis using multiple transcriptome datasets obtained from an ectopic vascular cell transdifferentiation system using Arabidopsis cotyledons, Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL). The cambium gene list included a gene encoding the transcription factor BES1/BZR1 Homolog 3 (BEH3), whose homolog BES1 negatively affects vascular stem cell maintenance. Interestingly, null beh3 mutant alleles showed a large variation in their vascular size, indicating that BEH3 functions as a stabilizer of vascular stem cells. Genetic analysis revealed that BEH3 and BES1 perform opposite functions in the regulation of vascular stem cells and the differentiation of vascular cells in the context of the VISUAL system. At the biochemical level, BEH3 showed weak transcriptional repressor activity and functioned antagonistically to other BES/BZR members by competing for binding to the brassinosteroid response element. Furthermore, mathematical modeling suggested that the competitive relationship between BES/BZR homologs leads to the robust regulation of vascular stem cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Câmbio/genética , Proteínas de Ligação a DNA/metabolismo , Visualização de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Mutação , Floema/genética , Filogenia , Plantas Geneticamente Modificadas , Elementos de Resposta , Xilema/genética
5.
Nature ; 556(7700): 235-238, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618812

RESUMO

Mammalian peptide hormones propagate extracellular stimuli from sensing tissues to appropriate targets to achieve optimal growth maintenance 1 . In land plants, root-to-shoot signalling is important to prevent water loss by transpiration and to adapt to water-deficient conditions 2, 3 . The phytohormone abscisic acid has a role in the regulation of stomatal movement to prevent water loss 4 . However, no mobile signalling molecules have yet been identified that can trigger abscisic acid accumulation in leaves. Here we show that the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED 25 (CLE25) peptide transmits water-deficiency signals through vascular tissues in Arabidopsis, and affects abscisic acid biosynthesis and stomatal control of transpiration in association with BARELY ANY MERISTEM (BAM) receptors in leaves. The CLE25 gene is expressed in vascular tissues and enhanced in roots in response to dehydration stress. The root-derived CLE25 peptide moves from the roots to the leaves, where it induces stomatal closure by modulating abscisic acid accumulation and thereby enhances resistance to dehydration stress. BAM receptors are required for the CLE25 peptide-induced dehydration stress response in leaves, and the CLE25-BAM module therefore probably functions as one of the signalling molecules for long-distance signalling in the dehydration response.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Desidratação , Dioxigenases/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Água/metabolismo
6.
Plant Mol Biol ; 108(3): 225-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35038066

RESUMO

KEY MESSAGE: This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a ß-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo , Estradiol/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
7.
New Phytol ; 232(2): 734-752, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375004

RESUMO

Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pseudomonas syringae , Fatores de Transcrição/genética
8.
Plant Mol Biol ; 104(6): 561-574, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980951

RESUMO

KEY MESSAGE: This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the ß-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Brotos de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Luz , Brotos de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Transdução de Sinais
9.
Plant Cell Physiol ; 61(2): 255-264, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922574

RESUMO

Stem cells undergo cell division and differentiation to ensure organized tissue development. Because plant cells are immobile, plant stem cells ought to decide their cell fate prior to differentiation, to locate specialized cells in the correct position. In this study, based on a chemical screen, we isolated a novel secondary cell wall indicator BF-170, which binds to lignin and can be used to image in vitro and in situ xylem development. Use of BF-170 to observe the vascular differentiation pattern in the in vitro vascular cell induction system, VISUAL, revealed that adaxial mesophyll cells of cotyledons predominantly generate ectopic xylem cells. Moreover, phloem cells are abundantly produced on the abaxial layer, suggesting the involvement of leaf adaxial-abaxial polarity in determining vascular cell fate. Analysis of abaxial polarity mutants highlighted the role of YAB3, an abaxial cell fate regulator, in suppressing xylem and promoting phloem differentiation on the abaxial domains in VISUAL. Furthermore, YABBY family genes affected in vivo vascular development during the secondary growth. Our results denoted the possibility that such mediators of spatial information contribute to correctly determine the cell fate of vascular stem cells, to conserve the vascular pattern of land plants.


Assuntos
Diferenciação Celular/fisiologia , Imagem Óptica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Células-Tronco/metabolismo , Compostos de Anilina , Arabidopsis/citologia , Arabidopsis/genética , Parede Celular , Cotilédone/citologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Corantes Fluorescentes , Genes de Plantas , Lignina/metabolismo , Floema/citologia , Floema/genética , Floema/crescimento & desenvolvimento , Folhas de Planta/citologia , Raízes de Plantas/citologia , Quinolinas , Xilema/citologia , Xilema/genética , Xilema/crescimento & desenvolvimento
10.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28646092

RESUMO

AGD1, a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP), functions in specifying root hair polarity in Arabidopsis thaliana To better understand how AGD1 modulates root hair growth, we generated full-length and domain-deleted AGD1-green fluorescent protein (GFP) constructs, and followed their localization during root hair development. AGD1-GFP localized to the cytoplasm and was recruited to specific regions of the root hair plasma membrane (PM). Distinct PM AGD1-GFP signal was first detected along the site of root hair bulge formation. The construct continued to mark the PM at the root hair apical dome, but only during periods of reduced growth. During rapid tip growth, AGD1-GFP labeled the PM of the lateral flanks and dissipated from the apical-most PM. Deletion analysis and a single domain GFP fusion revealed that the pleckstrin homology (PH) domain is the minimal unit required for recruitment of AGD1 to the PM. Our results indicate that differential recruitment of AGD1 to specific PM domains is an essential component of the membrane trafficking machinery that facilitates root hair developmental phase transitions and responses to changes in the root microenvironment.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Raízes de Plantas/metabolismo , Deleção de Sequência , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
11.
Plant Cell ; 29(12): 3123-3139, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29133465

RESUMO

Proper patterning of the cell wall is essential for plant cell development. Cortical microtubule arrays direct the deposition patterns of cell walls at the plasma membrane. However, the precise mechanism underlying cortical microtubule organization is not well understood. Here, we show that a microtubule-associated protein, CORD1 (CORTICAL MICROTUBULE DISORDERING1), is required for the pitted secondary cell wall pattern of metaxylem vessels in Arabidopsis thaliana Loss of CORD1 and its paralog, CORD2, led to the formation of irregular secondary cell walls with small pits in metaxylem vessels, while overexpressing CORD1 led to the formation of abnormally enlarged secondary cell wall pits. Ectopic expression of CORD1 disturbed the parallel cortical microtubule array by promoting the detachment of microtubules from the plasma membrane. A reconstructive approach revealed that CORD1-induced disorganization of cortical microtubules impairs the boundaries of plasma membrane domains of active ROP11 GTPase, which govern pit formation. Our data suggest that CORD1 promotes cortical microtubule disorganization to regulate secondary cell wall pit formation. The Arabidopsis genome has six CORD1 paralogs that are expressed in various tissues during plant development, suggesting they are important for regulating cortical microtubules during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Padronização Corporal , Parede Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Domínios Proteicos , Xilema/citologia , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo
12.
Plant J ; 94(1): 48-59, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383774

RESUMO

The post-embryonic growth of plants requires the activities of apical meristems and lateral meristems. In the meristems, self-proliferation and differentiation of stem cells is tightly modulated by plant hormone signaling networks and specific transcription factors. Despite extensive studies on stem cell maintenance in plants, the mechanism by which stem cells are initially established is largely unknown. Vascular stem cells consisting of procambial/cambial cells give rise to xylem and phloem cells. In this study, we analyzed the establishment of procambial cells using the in vitro culture system VISUAL, in which mesophyll cells rapidly differentiate into xylem tracheary elements and phloem sieve elements via procambial cells. We found that procambial cell formation in VISUAL is initiated by light, which can be replaced by application of gibberellin (GA). Gibberellin was able to promote procambial cell formation through degradation of DELLA, whereas light did not elevate the endogenous GA content. Indeed, light in combination with bikinin reduced the accumulation of DELLA protein in VISUAL. Consistently, overexpression of a constitutively active DELLA protein repressed vascular cell differentiation even under light. These combined results suggest that DELLA signaling suppresses procambial cell formation during vascular development in VISUAL.


Assuntos
Proteínas de Arabidopsis/fisiologia , Floema/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular , Giberelinas/fisiologia , Luz , Floema/citologia , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais , Xilema/citologia
13.
Plant Cell Physiol ; 60(12): 2684-2691, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392340

RESUMO

The phytohormone auxin governs various developmental processes in plants including vascular formation. Auxin transport and biosynthesis are important factors in determining auxin distribution in tissues. Although the role of auxin transport in vein pattern formation is widely recognized, that of auxin biosynthesis in vascular development is poorly understood. Heterodimer complexes comprising two basic helix-loop-helix protein families, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5)/TMO5-LIKE1 (T5L1), are master transcriptional regulators of the initial process of vascular development. The LHW-TMO5/T5L1 dimers regulate vascular initial cell production, vascular cell proliferation and xylem fate determination in the embryo and root apical meristem (RAM). In this study, we investigated the function of local auxin biosynthesis in initial vascular development in RAM. Results showed that LHW-T5L1 upregulated the expression of YUCCA4 (YUC4), a key auxin biosynthesis gene. The expression of YUC4 was essential for promoting xylem differentiation and vascular cell proliferation in RAM. Conversely, auxin biosynthesis was required for maintaining the expression levels of LHW, TMO5/T5L1 and their targets. Our results suggest that local auxin biosynthesis forms a positive feedback loop for fine-tuning the level of LHW-TMO5/T5L1, which is necessary for initiating vascular development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Raízes de Plantas/metabolismo , Xilema/metabolismo
14.
Plant Cell Physiol ; 60(7): 1514-1524, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30989198

RESUMO

Pathogenic fungi from the genus Colletotrichum form invasive hyphae; the hyphae are surrounded by an extra-invasive hyphal membrane (EIHM), which is continuous with the plant plasma membrane. Although the EIHM plays a crucial role as the interface between plant and fungal cells, its precise function during Colletotrichum infection remains elusive. Here, we show that enrichment of phosphoinositides (PIs) has a crucial role in Colletotrichum infection. We observed the localization of PIs in Arabidopsis thaliana cells infected by A. thaliana-adapted Colletotrichum higginsianum (Ch), and found that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] was extremely enriched in the EIHM during Ch infection. We also found that phosphatidylinositol 4-phosphate-5 kinase (PIP5K), which catalyzes production of PI(4,5)P2, also accumulated at the EIHM. The overexpression of PIP5K3 in A. thaliana increased hyphal invasion by Ch. An exocytic factor, EXO84b, was targeted to the EIHM during Ch infection, although endocytic factors such as CLATHRIN LIGHT CHAIN 2 and FLOTILLIN 1 did not. Intriguingly, the interfacial membranes between A. thaliana and powdery mildew- or downy mildew-causing pathogens did not accumulate PI(4,5)P2. These results suggest that Ch could modify the PI(4,5)P2 levels in the EIHM to increase the exocytic membrane/protein supply of the EIHM for successful infection. Our results also suggest that PI(4,5)P2 biosynthesis is a promising target for improved defense against Colletotrichum infection.


Assuntos
Arabidopsis/microbiologia , Colletotrichum , Hifas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Doenças das Plantas/microbiologia , Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/fisiologia , Folhas de Planta/microbiologia , Nicotiana/microbiologia
15.
PLoS Pathog ; 13(2): e1006142, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28158306

RESUMO

Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed that cyst nematode CLE-like effector proteins delivered into host cells through a stylet, act as ligand mimics of plant A-type CLE peptides and are pivotal for successful parasitism. Here we report the identification of a new class of CLE peptides from cyst nematodes with functional similarity to the B-type CLE peptide TDIF (tracheary element differentiation inhibitory factor) encoded by the CLE41 and CLE44 genes in Arabidopsis. We further demonstrate that the TDIF-TDR (TDIF receptor)-WOX4 pathway, which promotes procambial meristem cell proliferation, is involved in beet cyst nematode Heterodera schachtii parasitism. We observed activation of the TDIF pathway in developing feeding sites, reduced nematode infection in cle41 and tdr-1 wox4-1 mutants, and compromised syncytium size in cle41, tdr-1, wox4-1 and tdr-1 wox4-1 mutants. By qRT-PCR and promoter:GUS analyses, we showed that the expression of WOX4 is decreased in a clv1-101 clv2-101 rpk2-5 mutant, suggesting that WOX4 is a potential downstream target of nematode CLEs. Exogenous treatment with both nematode A-type and B-type CLE peptides induced massive cell proliferation in wild type roots, suggesting that the two types of CLEs may regulate cell proliferation during feeding site formation. These findings highlight an important role of the procambial cell proliferation pathway in cyst nematode feeding site formation.


Assuntos
Arabidopsis/parasitologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Doenças das Plantas/parasitologia , Tylenchoidea/metabolismo , Tylenchoidea/parasitologia , Animais , Peptídeos/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Xilema
16.
New Phytol ; 222(1): 159-170, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317651

RESUMO

Sap molecules are transported by xylem flow throughout the whole plant body. Factors regulating the xylem transport of different molecules remain to be identified. We used fluorophores to visualize xylem transport from roots to leaves in Arabidopsis thaliana. Several previously established Arabidopsis lines with modified xylem cell walls were used to determine the contribution of xylem cell walls to xylem transport. Fluorophores underwent xylem flow-dependent transport from roots to leaves within 20 min. A comparison of rhodamine, fluorescein and three fluorescently labeled CLV3/ESR-related (CLE) peptides revealed cargo-dependent xylem transport patterns in terms of leaf position and vein order. Only minor changes in amino acid sequence were sufficient to alter the xylem transport patterns of the labeled CLE peptides. We found that the xylem transport pattern of fluorescein was affected in Arabidopsis lines with modified AtXYN1, LAC4 or CCoAOMT1 expression. In these lines, application of a defense inducer, pipecolic acid, to roots resulted in altered defense response patterns in leaves, whereas all the lines showed wild-type-like responses when pipecolic acid was sprayed onto leaves. The combined results reveal a finely controlled cargo-dependent xylem transport and suggest that the xylem cell wall structure is crucial for this transport system.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Celulase/metabolismo , Fluoresceína/metabolismo , Lignina/metabolismo , Peptídeos/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Rodaminas/metabolismo
17.
Plant Cell ; 28(6): 1250-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27194709

RESUMO

Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Floema/citologia , Floema/metabolismo , Xilema/citologia , Xilema/metabolismo
18.
Plant Cell Physiol ; 59(5): 989-996, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444288

RESUMO

Xylem includes xylem parenchyma cells, fibers and tracheary elements. Differentiation of tracheary elements is an irreversible process that is controlled by the master regulator VASCULAR-RELATED NAC-DOMAIN 7 (VND7). Molecular events occurring downstream of VND7 are well understood, but little is known regarding upstream regulation of VND7. In this study, we identified LOB DOMAIN-CONTAINING PROTEIN 15 (LBD15)/ASYMMETRIC LEAVES2-LIKE (ASL11) as a regulator of VND7. LBD15 was expressed in immature vascular cells and positively regulated both VND7 expression and differentiation of tracheary elements. LBD15 directly associated with the upstream sequence of VND7 and positively regulated VND7 expression. A 25 bp upstream sequence was essential for VND7 expression in the elongation zone of Arabidopsis roots. Taken together with previous studies identifying LBD15 as a target of VND7, we propose that LBD15 acts in a positive feedback regulation system that promotes and accelerates VND7 expression during the initiation phase of tracheary element differentiation in roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas , Domínios Proteicos , Fatores de Transcrição/genética
19.
Plant Cell Physiol ; 59(3): 590-600, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385529

RESUMO

Vascular development is a good model for studying cell differentiation in plants. Two conductive tissues, the xylem and phloem, are derived from common stem cells known as procambial/cambial cells. Glycogen synthase kinase 3 proteins (GSK3s) play crucial roles in maintaining procambial/cambial cells by suppressing their differentiation into xylem or phloem cells. We previously designed an in vitro culture system for analyzing vascular cell differentiation named VISUAL (Vascular cell Induction culture System Using Arabidopsis Leaves). Using this system, we found that the transcription factor BRI1-EMS-SUPPRESSOR 1 (BES1) functions as a downstream target of GSK3s during xylem differentiation. However, the function of BES1 in vascular development remains largely unknown. Here, we found that, in addition to xylem differentiation, BES1 positively regulates phloem differentiation downstream of GSK3s. Transcriptome analysis using VISUAL confirmed that BES1 promotes bi-directional differentiation of procambial cells into xylem and phloem cells. Genetic analysis of loss-of-function mutants newly generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system revealed that BRASSINAZOLE RESISTANT 1 (BZR1), the closest homolog of BES1, functions in vascular development redundantly with BES1. Notably, BZR1 has a weaker impact on vascular cell differentiation than BES1, suggesting that they contribute differentially to this process. In conclusion, our findings indicate that BES1 and BZR1 are key regulators of both xylem and phloem cell differentiation from vascular stem cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Proteínas Nucleares/metabolismo , Floema/citologia , Xilema/citologia , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sequência de Bases , Técnicas de Cultura de Células , Proteínas de Ligação a DNA , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Teste de Complementação Genética , Hipocótilo/crescimento & desenvolvimento , Mutação/genética , Fenótipo
20.
Plant Cell Physiol ; 59(1): 8-16, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177423

RESUMO

The innate immune response is, in the first place, elicited at the site of infection. Thus, the host response can be different among the infected cells and the cells surrounding them. Effector-triggered immunity (ETI), a form of innate immunity in plants, is triggered by specific recognition between pathogen effectors and their corresponding plant cytosolic immune receptors, resulting in rapid localized cell death known as hypersensitive response (HR). HR cell death is usually limited to a few cells at the infection site, and is surrounded by a few layers of cells massively expressing defense genes such as Pathogenesis-Related Gene 1 (PR1). This virtually concentric pattern of the cellular responses in ETI is proposed to be regulated by a concentration gradient of salicylic acid (SA), a phytohormone accumulated around the infection site. Recent studies demonstrated that jasmonic acid (JA), another phytohormone known to be mutually antagonistic to SA in many cases, is also accumulated in and required for ETI, suggesting that ETI is a unique case. However, the molecular basis for this uniqueness remained largely to be solved. Here, we found that, using intravital time-lapse imaging, the JA signaling pathway is activated in the cells surrounding the central SA-active cells around the infection sites in Arabidopsis thaliana. This distinct spatial organization explains how these two phythormone pathways in a mutually antagonistic relationship can be activated simultaneously during ETI. Our results re-emphasize that the spatial consideration is a key strategy to gain mechanistic insights into the apparently complex signaling cross-talk in immunity.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno , Microscopia Confocal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA