Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 102(4-5): 403-416, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31898147

RESUMO

KEY MESSAGE: CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon, thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N-/O-demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy-D-xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon. This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Echinochloa/efeitos dos fármacos , Echinochloa/enzimologia , Resistência a Herbicidas/genética , Acetolactato Sintase/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Cromatografia Líquida , Escherichia coli , Regulação da Expressão Gênica de Plantas , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Sementes , Especificidade por Substrato , Compostos de Sulfonilureia/farmacologia , Espectrometria de Massas em Tandem , Temperatura
2.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943179

RESUMO

Echinochloa phyllopogon is an allotetraploid pernicious weed species found in rice fields worldwide that often exhibit resistance to multiple herbicides. An accurate genome sequence is essential to comprehensively understand the genetic basis underlying the traits of this species. Here, the telomere-to-telomere genome sequence of E. phyllopogon was presented. Eighteen chromosome sequences spanning 1.0 Gb were constructed using the PacBio highly fidelity long technology. Of the 18 chromosomes, 12 sequences were entirely assembled into telomere-to-telomere and gap-free contigs, whereas the remaining six sequences were constructed at the chromosomal level with only eight gaps. The sequences were assigned to the A and B genome with total lengths of 453 and 520 Mb, respectively. Repetitive sequences occupied 42.93% of the A genome and 48.47% of the B genome, although 32,337, and 30,889 high-confidence genes were predicted in the A and B genomes, respectively. This suggested that genome extensions and gene disruptions caused by repeated sequence accumulation often occur in the B genome before polyploidization to establish a tetraploid genome. The highly accurate and comprehensive genome sequence could be a milestone in understanding the molecular mechanisms of the pernicious traits and in developing effective weed control strategies to avoid yield loss in rice production.


Assuntos
Echinochloa , Oryza , Telômero/genética , Oryza/genética , Fenótipo , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA