Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Oncol ; 61(2): 215-222, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34534047

RESUMO

BACKGROUND: Temporal lobe necrosis (TLN) is a potential late effect after radiotherapy for skull base head and neck cancer (HNC). Several photon-derived dose constraints and normal tissue complication probability (NTCP) models have been proposed, however variation in relative biological effectiveness (RBE) may challenge the applicability of these dose constraints and models in proton therapy. The purpose of this study was therefore to investigate the influence of RBE variations on risk estimates of TLN after Intensity-Modulated Proton Therapy for HNC. MATERIAL AND METHODS: Seventy-five temporal lobes from 45 previously treated patients were included in the analysis. Sixteen temporal lobes had radiation associated Magnetic Resonance image changes (TLIC) suspected to be early signs of TLN. Fixed (RWDFix) and variable RBE-weighed doses (RWDVar) were calculated using RBE = 1.1 and two RBE models, respectively. RWDFix and RWDVar for temporal lobes were compared using Friedman's test. Based on RWDFix, six NTCP models were fitted and internally validated through bootstrapping. Estimated probabilities from RWDFix and RWDVar were compared using paired Wilcoxon test. Seven dose constraints were evaluated separately for RWDFix and RWDVar by calculating the observed proportion of TLIC in temporal lobes meeting the specific dose constraints. RESULTS: RWDVar were significantly higher than RWDFix (p < 0.01). NTCP model performance was good (AUC:0.79-0.84). The median difference in estimated probability between RWDFix and RWDVar ranged between 5.3% and 20.0% points (p < 0.01), with V60GyRBE and DMax at the smallest and largest differences, respectively. The proportion of TLIC was higher for RWDFix (4.0%-13.1%) versus RWDVar (1.3%-5.3%). For V65GyRBE ≤ 0.03 cc the proportion of TLIC was less than 5% for both RWDFix and RWDVar. CONCLUSION: NTCP estimates were significantly influenced by RBE variations. Dmax as model predictor resulted in the largest deviations in risk estimates between RWDFix and RWDVar. V65GyRBE ≤ 0.03 cc was the most consistent dose constraint for RWDFix and RWDVar.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Necrose , Probabilidade , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Eficiência Biológica Relativa , Lobo Temporal
2.
Int J Radiat Oncol Biol Phys ; 111(3): 684-692, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153379

RESUMO

PURPOSE: Intensity modulated proton therapy (IMPT) could yield high linear energy transfer (LET) in critical structures and increased biological effect. For head and neck cancers at the skull base this could potentially result in radiation-associated brain image change (RAIC). The purpose of the current study was to investigate voxel-wise dose and LET correlations with RAIC after IMPT. METHODS AND MATERIALS: For 15 patients with RAIC after IMPT, contrast enhancement observed on T1-weighted magnetic resonance imaging was contoured and coregistered to the planning computed tomography. Monte Carlo calculated dose and dose-averaged LET (LETd) distributions were extracted at voxel level and associations with RAIC were modelled using uni- and multivariate mixed effect logistic regression. Model performance was evaluated using the area under the receiver operating characteristic curve and precision-recall curve. RESULTS: An overall statistically significant RAIC association with dose and LETd was found in both the uni- and multivariate analysis. Patient heterogeneity was considerable, with standard deviation of the random effects of 1.81 (1.30-2.72) for dose and 2.68 (1.93-4.93) for LETd, respectively. Area under the receiver operating characteristic curve was 0.93 and 0.95 for the univariate dose-response model and multivariate model, respectively. Analysis of the LETd effect demonstrated increased risk of RAIC with increasing LETd for the majority of patients. Estimated probability of RAIC with LETd = 1 keV/µm was 4% (95% confidence interval, 0%, 0.44%) and 29% (95% confidence interval, 0.01%, 0.92%) for 60 and 70 Gy, respectively. The TD15 were estimated to be 63.6 and 50.1 Gy with LETd equal to 2 and 5 keV/µm, respectively. CONCLUSIONS: Our results suggest that the LETd effect could be of clinical significance for some patients; LETd assessment in clinical treatment plans should therefore be taken into consideration.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Encéfalo , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Base do Crânio
3.
PLoS One ; 15(2): e0228652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32045464

RESUMO

PURPOSE: To automate the estimation of swallowing motion from 2D MR cine images using deformable registration for future applications of personalized margin reduction in head and neck radiotherapy and outcome assessment of radiation-associated dysphagia. METHODS: Twenty-one patients with serial 2D FSPGR-MR cine scans of the head and neck conducted through the course of definitive radiotherapy for oropharyngeal cancer. Included patients had at least one cine scan before, during, or after radiotherapy, with a total of 52 cine scans. Contours of 7 swallowing related regions-of-interest (ROIs), including pharyngeal constrictor, epiglottis, base of tongue, geniohyoid, hyoid, soft palate, and larynx, were manually delineated from consecutive frames of the cine scan covering at least one swallowing cycle. We applied a modified thin-plate-spline robust-point-matching algorithm to register the point sets of each ROI automatically over frames. The deformation vector fields from the registration were then used to estimate the motion during swallowing for each ROI. Registration errors were estimated by comparing the deformed contours with the manual contours. RESULTS: On average 22 frames of each cine scan were contoured. The registration for one cine scan (7 ROIs over 22 frames) on average took roughly 22 minutes. A number of 8018 registrations were successfully batch processed without human interaction after the contours were drawn. The average registration error for all ROIs and all patients was 0.36 mm (range: 0.06 mm- 2.06 mm). Larynx had the average largest motion in superior direction of all structures under consideration (range: 0.0 mm- 58.7 mm). Geniohyoid had the smallest overall motion of all ROIs under consideration and the superior-inferior motion was larger than the anterior-posterior motion for all ROIs. CONCLUSION: We developed and validated a deformable registration framework to automate the estimation of swallowing motion from 2D MR cine scans.


Assuntos
Transtornos de Deglutição/diagnóstico por imagem , Deglutição , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Humanos , Laringe/diagnóstico por imagem , Boca/diagnóstico por imagem , Faringe/diagnóstico por imagem
4.
Radiother Oncol ; 151: 119-125, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679304

RESUMO

BACKGROUND AND PURPOSE: To characterize patterns and outcomes of brain MR image changes after proton therapy (PT) for skull base head and neck cancer (HNC). MATERIAL AND METHODS: Post-treatment MRIs ≥6 months were reviewed for radiation-associated image changes (RAIC) in 127 patients. All patients had received at least a point dose of 40 Gy(RBE) to the brain. The MRIs were rigidly registered to planning CTs and RAIC lesions were contoured both on T1 weighted (post-contrast) and T2 weighted sequences, and dose-volume parameters extracted. Probability of RAIC was calculated using multistate survival analysis. Univariate/multivariate analyses were performed using Cox Regression. Recursive partitioning analysis was used to investigate dose-volume correlates of RAIC development. RESULTS: 17.3% developed RAIC. All RAIC events were asymptomatic and occurred in the temporal lobe (14), frontal lobe (6) and cerebellum (2). The median volume of the contrast enhanced RAIC lesion was 0.5 cc at their maximum size. The RAIC resolved or improved in 45.5% of the patients and were stable or progressed in 36.4%. The 3-year actuarial rate of developing RAIC was 14.3%. RAIC was observed in 63% of patients when V67 Gy(RBE) of the brain ≥0.17 cc. CONCLUSION: Small RAIC lesions after PT occurred in 17.3% of the patients; the majority in nasopharyngeal or sinonasal cancer. The estimated dose-volume correlations confirm the importance of minimizing focal high doses to brain when achievable.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Encéfalo , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Base do Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA