RESUMO
Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, â¼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knockdown of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.
Assuntos
Linhagem da Célula , Poliadenilação , Espermatócitos , Espermatogênese , Animais , Poliadenilação/genética , Masculino , Espermatogênese/genética , Espermatócitos/metabolismo , Espermatócitos/citologia , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genéticaRESUMO
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Assuntos
Células-Tronco Adultas , Isoformas de RNA , Regiões 3' não Traduzidas/genética , Células-Tronco Adultas/metabolismo , Animais , Masculino , Poliadenilação , Isoformas de Proteínas/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Cell type-specific transcriptional programs that drive differentiation of specialized cell types are key players in development and tissue regeneration. One of the most dramatic changes in the transcription program in Drosophila occurs with the transition from proliferating spermatogonia to differentiating spermatocytes, with >3000 genes either newly expressed or expressed from new alternative promoters in spermatocytes. Here we show that opening of these promoters from their closed state in precursor cells requires function of the spermatocyte-specific tMAC complex, localized at the promoters. The spermatocyte-specific promoters lack the previously identified canonical core promoter elements except for the Inr. Instead, these promoters are enriched for the binding site for the TALE-class homeodomain transcription factors Achi/Vis and for a motif originally identified under tMAC ChIP-seq peaks. The tMAC motif resembles part of the previously identified 14-bp ß2UE1 element critical for spermatocyte-specific expression. Analysis of downstream sequences relative to transcription start site usage suggested that ACA and CNAAATT motifs at specific positions can help promote efficient transcription initiation. Our results reveal how promoter-proximal sequence elements that recruit and are acted upon by cell type-specific chromatin binding complexes help establish a robust, cell type-specific transcription program for terminal differentiation.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Espermatogênese/genética , Motivos de Aminoácidos/genética , Animais , Sequência de Bases/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Masculino , Regiões Promotoras Genéticas/genética , Espermatócitos/citologia , Espermatócitos/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma/genéticaRESUMO
Posttranscriptional regulation of gene expression by RNA-binding proteins can enhance the speed and robustness of cell state transitions by controlling RNA stability, localization, or if, when, or where mRNAs are translated. The RNA helicase YTHDC2 is required to shut down components of the mitotic program to facilitate a proper switch from mitosis to meiosis in mouse germ cells. Here, we show that YTHDC2 has a second essential role in promoting meiotic progression in late spermatocytes. Inducing conditional knockout of Ythdc2 during the first wave of spermatogenesis, after initiation of meiotic prophase, allowed YTHDC2-deficient germ cells to advance to the pachytene stage and properly express many meiotic markers. However, the YTHDC2-deficient spermatocytes mis-expressed a number of genes, some up-regulated and some down-regulated, failed to transition to the diplotene stage, and then quickly died. Coimmunoprecipitation experiments revealed that YTHDC2 interacts with several RNA-binding proteins in early or late spermatocytes, with many of the interacting proteins, including MEIOC, localizing to granules, similar to YTHDC2. Our findings suggest that YTHDC2 collaborates with other RNA granule components to facilitate proper progression of germ cells through multiple steps of meiosis via mechanisms influencing posttranscriptional regulation of RNAs.
Assuntos
Meiose , RNA Helicases , Proteínas de Ligação a RNA , Espermatócitos , Espermatogênese , Animais , Masculino , Espermatócitos/metabolismo , Espermatócitos/citologia , Camundongos , Espermatogênese/fisiologia , Espermatogênese/genética , Meiose/fisiologia , RNA Helicases/metabolismo , RNA Helicases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Diferenciação Celular , Camundongos Knockout , Células Germinativas/metabolismoRESUMO
During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5â days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8â h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus, a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.
Assuntos
Proteínas de Drosophila , Meiose , Animais , Masculino , Meiose/genética , Espermatogênese/fisiologia , Prófase , Mitose , Espermatócitos/metabolismo , Drosophila/genética , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismoRESUMO
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Regiões 3' não Traduzidas , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Diferenciação Celular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Local signals and structural support from the surrounding cellular microenvironment play key roles in directing development in both embryonic organs and adult tissues. In Drosophila, male germ cells are intimately associated and co-differentiate with supporting somatic cells. Here, we show that the function of the Baz/aPKC/Par6 apical polarity complex in somatic cyst cells is required stage specifically for survival of the germ cells they enclose. Although spermatogonia enclosed by cyst cells in which the function of the Par complex had been knocked down survived and proliferated, newly formed spermatocytes enclosed by cyst cells lacking Par complex proteins died soon after onset of meiotic prophase. Loss of Par complex function resulted in stage-specific overactivation of the Jun-kinase (JNK) pathway in cyst cells. Knocking down expression of JNK pathway components or the GTPase Rab35 in cyst cells lacking Par complex function rescued the survival of neighboring spermatocytes, suggesting that action of the apical polarity complex ensures germ cell survival by preventing JNK pathway activation, and that the mechanism by which cyst cells lacking Par complex function kill neighboring spermatocytes requires intracellular trafficking in somatic cyst cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mitose/genética , Mitose/fisiologia , Proteína Quinase C/genéticaRESUMO
During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Drosophila Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis. We show that Dbf interacts with the RNA-binding protein Syncrip/hnRNPQ, a key regulator of localized translation in Drosophila We propose that the pleiotropic effects of dbf loss-of-function mutants are associated with the requirement of dbf function for translation of specific transcripts in spermatocytes. In agreement with this hypothesis, Dbf protein binds cyclin B mRNA and is essential for translation of cyclin B in mature spermatocytes.
Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Meiose , RNA Mensageiro/genética , Espermatogênese , Animais , Axonema/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Segregação de Cromossomos , Clonagem Molecular , Cruzamentos Genéticos , Ciclina B , Citocinese , Proteínas de Drosophila/genética , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Microtúbulos/metabolismo , Mutação , Proteínas de Ligação a RNA , Espermatócitos/metabolismo , Fuso Acromático/metabolismo , Transgenes , Dedos de ZincoRESUMO
Active adult stem cells maintain a bipotential state with progeny able to either self-renew or initiate differentiation depending on extrinsic signals from the surrounding microenvironment. However, the intrinsic gene regulatory networks and chromatin states that allow adult stem cells to make these cell fate choices are not entirely understood. Here we show that the transcription factor DNA Replication-related Element Factor (DREF) regulates adult stem cell maintenance in the Drosophila male germline. A temperature-sensitive allele of DREF described in this study genetically separated a role for DREF in germline stem cell self-renewal from the general roles of DREF in cell proliferation. The DREF temperature-sensitive allele caused defects in germline stem cell self-renewal but allowed viability and division of germline stem cells as well as cell viability, growth and division of somatic cyst stem cells in the testes and cells in the Drosophila eye. Germline stem cells mutant for the temperature sensitive DREF allele exhibited lower activation of a TGF-beta reporter, and their progeny turned on expression of the differentiation factor Bam prematurely. Results of genetic interaction analyses revealed that Mi-2 and Caf1/p55, components of the Nucleosome Remodeling and Deacetylase (NuRD) complex, genetically antagonize the role of DREF in germline stem cell maintenance. Taken together, these data suggest that DREF contributes to intrinsic components of the germline stem cell regulatory network that maintains competence to self-renew.
Assuntos
Adenosina Trifosfatases/genética , Células-Tronco Adultas/metabolismo , Autoantígenos/genética , Proteínas de Drosophila/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Nicho de Células-Tronco/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Fator de Crescimento Transformador beta/genéticaRESUMO
The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.
Assuntos
Ciclina B/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Meiose/fisiologia , Espermatogênese/fisiologia , Animais , Animais Geneticamente Modificados , Western Blotting , Sistemas CRISPR-Cas , Clonagem Molecular , Primers do DNA/genética , Drosophila/genética , Proteínas de Drosophila/metabolismo , Imunoprecipitação , Masculino , Microscopia de Fluorescência , RNA Polimerase II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.
Assuntos
Proteínas de Drosophila/genética , Complexo Mediador/genética , Espermatogênese , Fator de Transcrição TFIID/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Complexo Mediador/metabolismo , Meiose/genética , Espermatogônias/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimentoRESUMO
Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression.
Assuntos
Anáfase , Ciclo Celular , Drosophila/citologia , AnimaisRESUMO
BACKGROUND: In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. RESULTS: The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. CONCLUSIONS: We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Morfogênese , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Testículo/embriologia , Animais , Drosophila melanogaster/enzimologia , Evolução Molecular , Voo Animal/fisiologia , Técnicas de Silenciamento de Genes , Genes de Insetos , Proteínas de Fluorescência Verde/metabolismo , Masculino , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Modelos Biológicos , Músculo Esquelético/metabolismo , Mutação/genética , Especificidade de Órgãos , Fenótipo , Filogenia , Multimerização Proteica , Subunidades Proteicas/genética , Interferência de RNA , Espermátides/metabolismo , EspermatogêneseRESUMO
Specialized microenvironments, or niches, provide signaling cues that regulate stem cell behavior. In the Drosophila testis, the JAK-STAT signaling pathway regulates germline stem cell (GSC) attachment to the apical hub and somatic cyst stem cell (CySC) identity. Here, we demonstrate that chickadee, the Drosophila gene that encodes profilin, is required cell autonomously to maintain GSCs, possibly facilitating localization or maintenance of E-cadherin to the GSC-hub cell interface. Germline specific overexpression of Adenomatous Polyposis Coli 2 (APC2) rescued GSC loss in chic hypomorphs, suggesting an additive role of APC2 and F-actin in maintaining the adherens junctions that anchor GSCs to the niche. In addition, loss of chic function in the soma resulted in failure of somatic cyst cells to maintain germ cell enclosure and overproliferation of transit-amplifying spermatogonia.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Profilinas/metabolismo , Espermatozoides/metabolismo , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Profilinas/genética , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Espermatogônias/citologia , Espermatogônias/metabolismo , Espermatozoides/citologia , Nicho de Células-Tronco , Proteínas Supressoras de Tumor/biossínteseRESUMO
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis.
Assuntos
Citocinese , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos , Fuso AcromáticoRESUMO
The ubiquitin proteasome system (UPS) regulates many biological pathways by post-translationally ubiquitylating proteins for degradation. Although maintaining a dynamic balance between free ubiquitin and ubiquitylated proteins is key to UPS function, the mechanisms that regulate ubiquitin homeostasis in different tissues through development are not clear. Here we show, via analysis of the magellan (magn) complementation group, that loss of function of the Drosophila polyubiquitin Ubi-p63E results specifically in meiotic arrest sterility in males. Ubi-p63E contributes predominantly to maintaining the free ubiquitin pool in testes. The function of Ubi-p63E is required cell-autonomously for proper meiotic chromatin condensation, cell cycle progression and spermatid differentiation. magn mutant germ cells develop normally to the spermatocyte stage but arrest at the G2/M transition of meiosis I, with lack of protein expression of the key meiotic cell cycle regulators Boule and Cyclin B. Loss of Ubi-p63E function did not strongly affect the spermatocyte transcription program regulated by the testis TBP-associated factor (tTAF) or meiosis arrest complex (tMAC) genes. Knocking down proteasome function specifically in spermatocytes caused a different meiotic arrest phenotype, suggesting that the magn phenotype might not result from general defects in protein degradation. Our results suggest a conserved role of polyubiquitin genes in male meiosis and a potential mechanism leading to meiosis I maturation arrest.
Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Drosophila/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Meiose/fisiologia , Poliubiquitina/genética , Animais , Western Blotting , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , Hibridização In Situ , Masculino , Análise em Microsséries , Microscopia de Fluorescência , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/crescimento & desenvolvimentoRESUMO
Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.
Assuntos
Células-Tronco Adultas/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Fatores de Transcrição/metabolismo , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Germinativas , Homeostase , Masculino , Transdução de Sinais , Testículo/metabolismo , Fatores de Transcrição/genéticaRESUMO
The stem cell niche provides a supportive microenvironment to maintain adult stem cells in their undifferentiated state. Adhesion between adult stem cells and niche cells or the local basement membrane ensures retention of stem cells in the niche environment. Drosophila male germline stem cells (GSCs) attach to somatic hub cells, a component of their niche, through E-cadherin-mediated adherens junctions, and orient their centrosomes toward these localized junctional complexes to carry out asymmetric divisions. Here we show that the transmembrane receptor tyrosine phosphatase Leukocyte-antigen-related-like (Lar), which is best known for its function in axonal migration and synapse morphogenesis in the nervous system, helps maintain GSCs at the hub by promoting E-cadherin-based adhesion between hub cells and GSCs. Lar is expressed in GSCs and early spermatogonial cells and localizes to the hub-GSC interface. Loss of Lar function resulted in a reduced number of GSCs at the hub. Lar function was required cell-autonomously in germ cells for proper localization of Adenomatous polyposis coli 2 and E-cadherin at the hub-GSC interface and for the proper orientation of centrosomes in GSCs. Ultrastructural analysis revealed that in Lar mutants the adherens junctions between hub cells and GSCs lack the characteristic dense staining seen in wild-type controls. Thus, the Lar receptor tyrosine phosphatase appears to polarize and retain GSCs through maintenance of localized E-cadherin-based adherens junctions.
Assuntos
Células Germinativas/citologia , Células-Tronco/citologia , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem da Célula , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Microscopia de Contraste de Fase/métodos , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismoRESUMO
Adult stem cells are believed to be maintained by a specialized microenvironment, the niche, which provides short-range signals that either instruct stem cells to self-renew or inhibit execution of preprogrammed differentiation pathways. In Drosophila testes, somatic cyst stem cells (CySCs) and the apical hub form the niche for neighboring germline stem cells (GSCs), with CySCs as the proposed source of instructive self-renewal signals [Leatherman JL, Dinardo S (2010) Nat Cell Biol 12(8):806-811]. In contrast to this model, we show that early germ cells with GSC characteristics can be maintained over time after ablation of CySCs and their cyst cell progeny. Without CySCs and cyst cells, early germ cells away from the hub failed to initiate differentiation. Our results suggest that CySCs do not have a necessary instructive role in specifying GSC self-renewal and that the differentiated progeny of CySCs provide an environment necessary to trigger GSC differentiation. This work highlights the complex interaction between different stem cell populations in the same niche and how the state of one stem cell population can influence the fate of the other.