Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Lancet Oncol ; 23(2): e75-e87, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35114134

RESUMO

Radionuclide therapy is a rapidly expanding oncological treatment method. Overwhelmingly, the application of radionuclide therapy in clinical practice relies on fixed or empirical dosing strategies. In principle, the application of dosimetry promises to improve patient outcomes by tailoring administered radionuclide therapy activities to each patient's unique tumour burden and tumour uptake. However, robust prospective data are scarce due to few prospective randomised clinical trials investigating the use of dosimetry in radionuclide therapy. In this Review, we describe the role of dosimetry as it has been applied historically and in modern clinical practice and its potential future applications. We further emphasise areas of future growth and a potential pathway to optimised personalised activity modulation of radionuclide therapy.


Assuntos
Neoplasias/radioterapia , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico , Dosagem Radioterapêutica , Humanos , Neoplasias Hepáticas/radioterapia , Masculino , Neuroblastoma/radioterapia , Neoplasias da Glândula Tireoide/radioterapia
2.
Eur J Nucl Med Mol Imaging ; 48(4): 1166-1177, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33047248

RESUMO

PURPOSE: Radioimmunotherapy (RIT) delivered through the cerebrospinal fluid (CSF) has been shown to be a safe and promising treatment for leptomeningeal metastases. Pharmacokinetic models for intraOmmaya antiGD2 monoclonal antibody 131I-3F8 have been proposed to improve therapeutic effect while minimizing radiation toxicity. In this study, we now apply pharmacokinetic modeling to intraOmmaya 131I-omburtamab (8H9), an antiB7-H3 antibody which has shown promise in RIT of leptomeningeal metastases. METHODS: Serial CSF samples were collected and radioassayed from 61 patients undergoing a total of 177 intraOmmaya administrations of 131I-omburtamab for leptomeningeal malignancy. A two-compartment pharmacokinetic model with 12 differential equations was constructed and fitted to the radioactivity measurements of CSF samples collected from patients. The model was used to improve anti-tumor dose while reducing off-target toxicity. Mathematical endpoints were (a) the area under the concentration curve (AUC) of the tumor-bound antibody, AUC [CIAR(t)], (b) the AUC of the unbound "harmful" antibody, AUC [CIA(t)], and (c) the therapeutic index, AUC [CIAR(t)] ÷ AUC [CIA(t)]. RESULTS: The model fit CSF radioactivity data well (mean R = 96.4%). The median immunoreactivity of 131I-omburtamab matched literature values at 69.1%. Off-target toxicity (AUC [CIA(t)]) was predicted to increase more quickly than AUC [CIAR(t)] as a function of 131I-omburtamab dose, but the balance of therapeutic index and AUC [CIAR(t)] remained favorable over a broad range of administered doses (0.48-1.40 mg or 881-2592 MBq). While antitumor dose and therapeutic index increased with antigen density, the optimal administered dose did not. Dose fractionization into two separate injections increased therapeutic index by 38%, and splitting into 5 injections by 82%. Increasing antibody immunoreactivity to 100% only increased therapeutic index by 17.5%. CONCLUSION: The 2-compartmental pharmacokinetic model when applied to intraOmmaya 131I-omburtamab yielded both intuitive and nonintuitive therapeutic predictions. The potential advantage of further dose fractionization warrants clinical validation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov , NCT00089245.


Assuntos
Radioisótopos do Iodo , Radioimunoterapia , Anticorpos Monoclonais Murinos , Humanos , Radioisótopos do Iodo/uso terapêutico , Índice Terapêutico
3.
Mol Pharm ; 15(6): 2133-2141, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684277

RESUMO

Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53-5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Imagem Molecular/métodos , Neoplasias/patologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Receptores da Prolactina/imunologia , Receptores da Prolactina/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Eur J Nucl Med Mol Imaging ; 43(5): 925-937, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26596724

RESUMO

PURPOSE: GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn-(radiolanthanide metal) complex. METHODS: PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens (177)Lu-or (86)Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. RESULTS: Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq (177)Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 - 700 mm(3)) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 - 3.0 based on time to 500-mm(3) tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten (86)Y-DOTA-Bn. CONCLUSION: We have developed anti-GPA33 PRIT as a triple-step theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Afinidade de Anticorpos , Neoplasias Colorretais/diagnóstico por imagem , Imunoconjugados/uso terapêutico , Glicoproteínas de Membrana/imunologia , Radioimunoterapia , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Anticorpos Biespecíficos/imunologia , Neoplasias Colorretais/radioterapia , Imunoconjugados/imunologia , Imunoglobulina G/imunologia , Lutécio/uso terapêutico , Camundongos , Compostos Radiofarmacêuticos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Radioisótopos de Ítrio/uso terapêutico
5.
Res Sq ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39483906

RESUMO

Purpose Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[ 18 F]fluoropropionic acid ([ 18 F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. Procedures : Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [ 18 F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. Results Significantly higher cardiac [ 18 F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 min to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [ 18 F]FPA in tissues other than the heart. Co-administration of [ 18 F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. Conclusions [ 18 F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.

6.
Med Phys ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422495

RESUMO

BACKGROUND: Substantial improvements in spatial resolution in brain positron emission tomography (PET) scanners have greatly reduced partial volume effect, making head movement the main source of image blur. To achieve high-resolution PET neuroimaging, precise real-time estimation of both head position and orientation is essential for accurate motion compensation. PURPOSE: A high-resolution electromagnetic motion tracking (EMMT) system with an event-by-event motion correction is developed for PET-CT scanners. METHODS: EMMT is comprised of a source, an array of sensors, and a readout electronic unit (REU). The source acts as a transmitter and emits an EM dipole field. It is placed in close proximity to the sensor array and detects changes in EM flux density due to sensor movement. The REU digitizes signals from each sensor and captures precise rotational and translational movements in real time. Tracked motion in the EMMT coordinate system is synchronized with the PET list-mode data and transformed into the scanner coordinate system by locating paired positions in both systems. The optimal rigid motion is estimated using singular value decomposition. The rigid motion and depth-of-interaction (DOI) parallax effect are corrected by event-by-event rebinning of mispositioned lines-of-response (LORs). We integrated the EMMT with our recently developed ultra-high resolution Prism-PET prototype brain scanner and a commercial Siemens Biograph mCT PET-CT scanner. We assessed the imaging performance of the Prism-PET/EMMT system using multi-frame motion of point sources and phantoms. The mCT/EMMT system was validated using a set of point sources attached to both a mannequin head and a human volunteer, for simulating multiframe and continuous motions, respectively. Additionally, a human subject for [18F]MK6240 PET imaging was included. RESULTS: The tracking accuracy of the Prism-PET/EMMT system was quantified as a root-mean-square (RMS) error of 0.49 ∘ $^{\circ }$ for 100 ∘ $^{\circ }$ axial rotations, and an RMS error of 0.15 mm for 100 mm translations.The percent difference (%diff) in average full width at half maximum (FWHM) of point source between motion-corrected and static images, within a motion range of ± 20 ∘ $\pm 20^\circ$ and ± $\pm$ 10 mm from the center of the scanner's field-of-view (FOV), was 3.9%. The measured recovery coefficients of the 2.5-mm diameter sphere in the activity-filled partial volume correction phantom were 23.9%, 70.8%, and 74.0% for the phantom with multi-frame motion, with motion and motion compensation, and without motion, respectively. In the mCT/EMMT system, the %diff in average FWHM of point sources between motion-corrected and static images, within a motion range of ± 30 ∘ $\pm 30^\circ$ and ± $\pm$ 10 mm from the center of the FOV, was 14%. Applying motion correction to the [18F]MK6240 PET imaging reduced the motion-induced spill-in artifact in the lateral ventricle region, lowering its standardized uptake value ratio (SUVR) from 0.70 to 0.34. CONCLUSIONS: The proposed EMMT system is a cost-effective, high frame-rate, and none-line-of-sight alternative to infrared camera-based tracking systems and is capable of achieving high rotational and translational tracking accuracies for mitigating motion-induced blur in high-resolution brain dedicated PET scanners.

7.
Sci Adv ; 10(41): eadp9150, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39383230

RESUMO

Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.


Assuntos
Dependovirus , Terapia Genética , Animais , Camundongos , Terapia Genética/métodos , Dependovirus/genética , Doença de Parkinson/terapia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Vetores Genéticos/genética , Humanos , Núcleo Subtalâmico/metabolismo , Campos Magnéticos , Globo Pálido/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Neurônios/metabolismo , Corpo Estriado/metabolismo , Canais de Cátion TRPV
8.
Neurotrauma Rep ; 5(1): 359-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655117

RESUMO

Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.

9.
J Nucl Med ; 65(10): 1611-1618, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39168519

RESUMO

Radiolabeled small-molecule DOTA-haptens can be combined with antitumor/anti-DOTA bispecific antibodies (BsAbs) for pretargeted radioimmunotherapy (PRIT). For optimized delivery of the theranostic γ- and ß-emitting isotope 177Lu with DOTA-based PRIT (DOTA-PRIT), bivalent Gemini (DOTA-Bn-thiourea-PEG4-thiourea-Bn-DOTA, aka (3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(DOTA-benzyl thiourea)) was developed. Methods: Gemini was synthesized by linking 2 S-2-(4-isothiocyanatobenzyl)-DOTA molecules together via a 1,14-diamino-PEG4 linker. [177Lu]Lu-Gemini was prepared with no-carrier-added 177LuCl3 to a molar-specific activity of 123 GBq/µmol and radiochemical purity of more than 99%. The specificity of BsAb-177Lu-Gemini was verified in vitro. Subsequently, we evaluated biodistribution and whole-body clearance for [177Lu]Lu-Gemini and, for comparison, our gold-standard monovalent [177Lu]Lu-S-2-(4-aminobenzyl)-DOTA ([177Lu]Lu-DOTA-Bn) in naïve (tumor-free) athymic nude mice. For our proof-of-concept system, a 3-step pretargeting approach was performed with an established DOTA-PRIT regimen (anti-GPA33/anti-DOTA IgG-scFv BsAb, a clearing agent, and [177Lu]Lu-Gemini) in mouse models. Results: Initial in vivo studies showed that [177Lu]Lu-Gemini behaved similarly to [177Lu]Lu-DOTA-Bn, with almost identical blood and whole-body clearance kinetics, as well as biodistribution and mouse kidney dosimetry. Pretargeting [177Lu]Lu-Gemini to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]Lu-Gemini for blood, tumor, liver, spleen, and kidneys of 3.99, 455, 6.93, 5.36, and 14.0 cGy/MBq, respectively. Tumor-to-normal tissue absorbed-dose ratios (i.e., therapeutic indices [TIs]) for the blood and kidneys were 114 and 33, respectively. In addition, we demonstrate that the use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT leads to improved TIs and augmented [177Lu]Lu-Gemini tumor uptake and retention in comparison to monovalent [177Lu]Lu-DOTA-Bn. Finally, we established efficacy in SW1222 tumor-bearing mice, demonstrating that a single injection of anti-GPA33 DOTA-PRIT with 44 MBq (1.2 mCi) of [177Lu]Lu-Gemini (estimated tumor-absorbed dose, 200 Gy) induced complete responses in 5 of 5 animals and a histologic cure in 2 of 5 (40%) animals. Moreover, a significant increase in survival compared with nontreated controls was noted (maximum tolerated dose not reached). Conclusion: We have developed a bivalent DOTA-radiohapten, [177Lu]Lu-Gemini, that showed improved radiopharmacology for DOTA-PRIT application. The use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT, as opposed to monovalent [177Lu]Lu-DOTA-Bn, allows curative treatments with considerably less administered 177Lu activity while still achieving high TIs for both the blood (>100) and the kidneys (>30).


Assuntos
Neoplasias Colorretais , Lutécio , Radioimunoterapia , Radioisótopos , Radioimunoterapia/métodos , Animais , Camundongos , Humanos , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/diagnóstico por imagem , Radioisótopos/uso terapêutico , Radioisótopos/química , Distribuição Tecidual , Linhagem Celular Tumoral , Marcação por Isótopo , Nanomedicina Teranóstica/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Feminino , Compostos Heterocíclicos com 1 Anel/química , Glicoproteínas de Membrana
10.
Methods Cell Biol ; 180: 93-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890935

RESUMO

Radiopharmaceutical therapy is a rapidly growing field for the treatment of cancer due to its high specificity and ability to target individual affected cells. A key component of the pre-clinical development of a new therapeutic radiopharmaceutical is the determination of its time-dependent distribution in tumors, normal tissues, and the whole body in mouse tumor models. Here, we provide an overview of the available instrumentation for the novice in radiation measurement. We also detail the methodology for assessing distribution and kinetics of a radiopharmaceutical and calculating radiation absorbed dose in mice using a gamma counter or a PET or SPECT camera.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Camundongos , Animais , Radiometria/métodos , Distribuição Tecidual
11.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37624734

RESUMO

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Assuntos
Dependovirus , Doenças do Sistema Nervoso , Animais , Dependovirus/genética , Radioisótopos do Iodo , Capsídeo , Distribuição Tecidual , Transdução Genética , Terapia Genética/métodos , Tomografia por Emissão de Pósitrons , Vetores Genéticos/genética , Técnicas de Transferência de Genes
12.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503198

RESUMO

Regulating the activity of discrete neuronal populations in living mammals after delivery of modified ion channels can be used to map functional circuits and potentially treat neurological diseases. Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity in motor circuits when exposed to magnetic fields. AAV-mediated delivery of a cre-dependent nanobody-TRPV1 calcium channel into the striatum of adenosine 2a (A2a) receptor-cre driver mice led to restricted expression within D2 neurons, resulting in motor freezing when placed in a 3T MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed focal activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus (STN) projection neurons in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and a corresponding improvement in motor rotational behavior during magnetic field exposure. These data demonstrate that AAV delivery of magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in vivo using clinically available devices for both preclinical analysis of circuit effects on behavior and potential human clinical translation.

13.
J Nucl Med ; 64(9): 1439-1445, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348919

RESUMO

Epithelial ovarian cancer (EOC) is often asymptomatic and presents clinically in an advanced stage as widespread peritoneal microscopic disease that is generally considered to be surgically incurable. Targeted α-therapy with the α-particle-emitting radionuclide 225Ac (half-life, 9.92 d) is a high-linear-energy-transfer treatment approach effective for small-volume disease and even single cells. Here, we report the use of human epidermal growth factor receptor 2 (HER2) 225Ac-pretargeted radioimmunotherapy (PRIT) to treat a mouse model of human EOC SKOV3 xenografts growing as peritoneal carcinomatosis (PC). Methods: On day 0, 105 SKOV3 cells transduced with a luciferase reporter gene were implanted intraperitoneally in nude mice, and tumor engraftment was verified by bioluminescent imaging (BLI). On day 15, treatment was started using 1 or 2 cycles of 3-step anti-HER2 225Ac-PRIT (37 kBq/cycle as 225Ac-Proteus DOTA), separated by a 1-wk interval. Efficacy and toxicity were monitored for up to 154 d. Results: Untreated PC-tumor-bearing nude mice showed a median survival of 112 d. We used 2 independent measures of response to evaluate the efficacy of 225Ac-PRIT. First, a greater proportion of the treated mice (9/10 1-cycle and 8/10 2-cycle; total, 17/20; 85%) survived long-term compared with controls (9/27, 33%), and significantly prolonged survival was documented (log-rank [Mantel-Cox] P = 0.0042). Second, using BLI, a significant difference in the integrated BLI signal area to 98 d was noted between controls and treated groups (P = 0.0354). Of a total of 8 mice from the 2-cycle treatment group (74 kBq total) that were evaluated by necropsy, kidney radiotoxicity was mild and did not manifest itself clinically (normal serum blood urea nitrogen and creatinine). Dosimetry estimates (relative biological effectiveness-weighted dose, where relative biological effectiveness = 5) per 37 kBq administered for tumors and kidneys were 56.9 and 16.1 Gy, respectively. One-cycle and 2-cycle treatments were equally effective. With immunohistology, mild tubular changes attributable to α-toxicity were observed in both therapeutic groups. Conclusion: Treatment of EOC PC-tumor-bearing mice with anti-HER2 225Ac-PRIT resulted in histologic cures and prolonged survival with minimal toxicity. Targeted α-therapy using the anti-HER2 225Ac-PRIT system is a potential treatment for otherwise incurable EOC.


Assuntos
Neoplasias Peritoneais , Radioimunoterapia , Humanos , Animais , Camundongos , Radioimunoterapia/métodos , Camundongos Nus , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/radioterapia , Neoplasias Peritoneais/tratamento farmacológico , Radioisótopos/uso terapêutico , Linhagem Celular Tumoral
14.
Artigo em Inglês | MEDLINE | ID: mdl-36876118

RESUMO

Repeated mild Traumatic Brain Injury (TBI) is a risk factor for Chronic Traumatic Encephalopathy (CTE), characterized pathologically by neurofibrillary tau deposition in the depths of brain sulci and surrounding blood vessels. The mechanism by which TBI leads to CTE remains unknown but has been posited to relate to axonal shear injury leading to release and possibly deposition of tau at the time of injury. As part of an IRB-approved study designed to learn how processes occurring acutely after TBI may predict later proteinopathy and neurodegeneration, we performed tau PET using 18F-MK6240 and MRI within 14 days of complicated mild TBI in three subjects. PET radiotracer accumulation was apparent in regions of traumatic hemorrhage in all subjects, with prominent intraparenchymal PET signal in one young subject with a history of repeated sports-related concussions. These results are consistent with off-target tracer binding to blood products as well as possible on-target binding to chronically and/or acutely-deposited neurofibrillary tau. Both explanations are highly relevant to applying tau PET to understanding TBI and CTE. Additional study is needed to assess the potential utility of tau PET in understanding how processes occurring acutely after TBI, such as release and deposition of tau and blood from damaged axons and blood vessels, may relate to development CTE years later.

15.
Mol Cancer Ther ; 21(1): 125-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667111

RESUMO

Peritoneal carcinomatosis (PC) is considered incurable, and more effective therapies are needed. Herein we test the hypothesis that GPA33-directed intracompartmental pretargeted radioimmunotherapy (PRIT) can cure colorectal peritoneal carcinomatosis. Nude mice were implanted intraperitoneally with luciferase-transduced GPA33-expressing SW1222 cells for aggressive peritoneal carcinomatosis (e.g., resected tumor mass 0.369 ± 0.246 g; n = 17 on day 29). For GPA33-PRIT, we administered intraperitoneally a high-affinity anti-GPA33/anti-DOTA bispecific antibody (BsAb), followed by clearing agent (intravenous), and lutetium-177 (Lu-177) or yttrium-86 (Y-86) radiolabeled DOTA-radiohapten (intraperitoneal) for beta/gamma-emitter therapy and PET imaging, respectively. The DOTA-radiohaptens were prepared from S-2-(4-aminobenzyl)-1,4,7, 10-tetraazacyclododecane tetraacetic acid chelate (DOTA-Bn). Efficacy and toxicity of single- versus three-cycle therapy were evaluated in mice 26-27 days post-tumor implantation. Single-cycle treatment ([177Lu]LuDOTA-Bn 111 MBq; tumor dose: 4,992 cGy) significantly prolonged median survival (MS) approximately 2-fold to 84.5 days in comparison with controls (P = 0.007). With three-cycle therapy (once weekly, total 333 MBq; tumor dose: 14,975 cGy), 6/8 (75%) survived long-term (MS > 183 days). Furthermore, for these treated long-term survivors, 1 mouse was completely disease free (microscopic "cure") at necropsy; the others showed stabilized disease, which was detectable during PET-CT using [86Y]DOTA-Bn. Treatment controls had MS ranging from 42-52.5 days (P < 0.001) and 19/20 mice succumbed to progressive intraperitoneal disease by 69 days. Multi-cycle GPA33 DOTA-PRIT significantly prolongs survival with reversible myelosuppression and no chronic marrow (929 cGy to blood) or kidney (982 cGy) radiotoxicity, with therapeutic indices of 12 for blood and 12 for kidneys. MTD was not reached.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Radioimunoterapia/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus
16.
Clin Cancer Res ; 27(2): 532-541, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32958698

RESUMO

PURPOSE: Many cancer treatments suffer from dose-limiting toxicities to vital organs due to poor therapeutic indices. To overcome these challenges we developed a novel multimerization platform that rapidly removes tumor-targeting proteins from the blood to substantially improve therapeutic index. EXPERIMENTAL DESIGN: The platform was designed as a fusion of a self-assembling and disassembling (SADA) domain to a tandem single-chain bispecific antibody (BsAb, anti-ganglioside GD2 × anti-DOTA). SADA-BsAbs were assessed with multiple in vivo tumor models using two-step pretargeted radioimmunotherapy (PRIT) to evaluate tumor uptake, dosimetry, and antitumor responses. RESULTS: SADA-BsAbs self-assembled into stable tetramers (220 kDa), but could also disassemble into dimers or monomers (55 kDa) that rapidly cleared via renal filtration and substantially reduced immunogenicity in mice. When used with rapidly clearing DOTA-caged PET isotopes, SADA-BsAbs demonstrated accurate tumor localization, dosimetry, and improved imaging contrast by PET/CT. When combined with therapeutic isotopes, two-step SADA-PRIT safely delivered massive doses of alpha-emitting (225Ac, 1.48 MBq/kg) or beta-emitting (177Lu, 6,660 MBq/kg) S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA) payloads to tumors, ablating them without any short-term or long-term toxicities to the bone marrow, kidneys, or liver. CONCLUSIONS: The SADA-BsAb platform safely delivered large doses of radioisotopes to tumors and demonstrated no toxicities to the bone marrow, kidneys, or liver. Because of its modularity, SADA-BsAbs can be easily adapted to most tumor antigens, tumor types, or drug delivery approaches to improve therapeutic index and maximize the delivered dose.See related commentary by Capala and Kunos, p. 377.


Assuntos
Neoplasias , Radioimunoterapia , Animais , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Am J Nucl Med Mol Imaging ; 10(6): 334-341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329935

RESUMO

Photons, electrons and protons have therapeutic use however positrons have only been used for diagnostic imaging purposes. The energies of positrons (ß+) from F-18 (0.633 MeV) and electrons (ß-) from I-131 (0.606 MeV) are very close and have similar equilibrium dose constants. Since [18F]-fluorodeoxyglucose (18F-FDG) clears rapidly from circulation, administration of 37-74 GBq (1-2 Ci) of 18F-FDG is relatively safe from an internal radiation dosimetry point of view. We initiated a phase I dose escalation study to assess the safety, toxicity, and potential therapeutic utility of administering 100-200 mCi/m2 18F-FDG delivered over a 1 to 5 day period in patients with advanced lymphomas and solid tumors refractory to standard of care treatment (SCT). Here we report the results of the first four patients treated. Four patients with advanced cancers received a single dose of 3.7-7.4 GBq/m2 (100-200 mCi/m2) 18F-FDG. We monitored the patients for adverse effects and for response. No treatment-related toxicities were observed. There was no increased radiation exposure to personnel. Two patients showed decrease in the index lesions' SUVs by 17-33% (Day 1) and 25-31% (Day 30) post treatment. The two other patients showed stable disease on 18F-PET-CT. Interestingly, responses were seen at low radiotherapy doses (below 1 Gy). This exploratory study demonstrated the safety of therapeutic administration of up to 14.2 GBq (385 mCi) 18F-FDG. In patients with 18F-FDG-avid cancers, targeted radionuclide 18F-FDG therapy appears safe and may offer clinical benefit.

18.
Hum Gene Ther ; 31(23-24): 1237-1259, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33233962

RESUMO

A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.


Assuntos
Encéfalo/diagnóstico por imagem , Dependovirus/genética , Radioisótopos do Iodo/farmacologia , Imagem Corporal Total/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Dependovirus/química , Vetores Genéticos/genética , Humanos , Radioisótopos do Iodo/química , Primatas , Distribuição Tecidual/efeitos dos fármacos
19.
Theranostics ; 10(25): 11359-11375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052220

RESUMO

This is the initial report of an α-based pre-targeted radioimmunotherapy (PRIT) using 225Ac and its theranostic pair, 111In. We call our novel tumor-targeting DOTA-hapten PRIT system "proteus-DOTA" or "Pr." Herein we report the first results of radiochemistry development, radiopharmacology, and stoichiometry of tumor antigen binding, including the role of specific activity, anti-tumor efficacy, and normal tissue toxicity with the Pr-PRIT approach (as α-DOTA-PRIT). A series of α-DOTA-PRIT therapy studies were performed in three solid human cancer xenograft models of colorectal cancer (GPA33), breast cancer (HER2), and neuroblastoma (GD2), including evaluation of chronic toxicity at ~20 weeks of select survivors. Methods: Preliminary biodistribution experiments in SW1222 tumor-bearing mice revealed that 225Ac could not be efficiently pretargeted with current DOTA-Bn hapten utilized for 177Lu or 90Y, leading to poor tumor uptake in vivo. Therefore, we synthesized Pr consisting of an empty DOTA-chelate for 225Ac, tethered via a short polyethylene glycol linker to a lutetium-complexed DOTA for picomolar anti-DOTA chelate single-chain variable fragment (scFv) binding. Pr was radiolabeled with 225Ac and its imaging surrogate, 111In. In vitro studies verified anti-DOTA scFv recognition of [225Ac]Pr, and in vivo biodistribution and clearance studies were performed to evaluate hapten suitability and in vivo targeting efficiency. Results: Intravenously (i.v.) administered 225Ac- or 111In-radiolabeled Pr in mice showed rapid renal clearance and minimal normal tissue retention. In vivo pretargeting studies show high tumor accumulation of Pr (16.71 ± 5.11 %IA/g or 13.19 ± 3.88 %IA/g at 24 h p.i. for [225Ac]Pr and [111In]Pr, respectively) and relatively low uptake in normal tissues (all average ≤ 1.4 %IA/g at 24 h p.i.). Maximum tolerated dose (MTD) was not reached for either [225Ac]Pr alone or pretargeted [225Ac]Pr at administered activities up to 296 kBq/mouse. Single-cycle treatment consisting of α-DOTA-PRIT with either huA33-C825 bispecific anti-tumor/anti-DOTA-hapten antibody (BsAb), anti-HER2-C825 BsAb, or hu3F8-C825 BsAb for targeting GPA33, HER2, or GD2, respectively, was highly effective. In the GPA33 model, no complete responses (CRs) were observed but prolonged overall survival of treated animals was 42 d for α-DOTA-PRIT vs. 25 d for [225Ac]Pr only (P < 0.0001); for GD2, CRs (7/7, 100%) and histologic cures (4/7, 57%); and for HER2, CRs (7/19, 37%) and histologic cures (10/19, 56%) with no acute or chronic toxicity. Conclusions: [225Ac]Pr and its imaging biomarker [111In]Pr demonstrate optimal radiopharmacologic behavior for theranostic applications of α-DOTA-PRIT. For this initial evaluation of efficacy and toxicity, single-cycle treatment regimens were performed in all three systems. Histologic toxicity was not observed, so MTD was not observed. Prolonged overall survival, CRs, and histologic cures were observed in treated animals. In comparison to RIT with anti-tumor IgG antibodies, [225Ac]Pr has a much improved safety profile. Ultimately, these data will be used to guide clinical development of toxicity and efficacy studies of [225Ac]Pr, with the goal of delivering massive lethal doses of radiation to achieve a high probability of cure without toxicity.


Assuntos
Partículas alfa/uso terapêutico , Neoplasias/terapia , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Nanomedicina Teranóstica/métodos , Actínio/administração & dosagem , Actínio/farmacocinética , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Feminino , Meia-Vida , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Radioisótopos de Índio/administração & dosagem , Radioisótopos de Índio/farmacocinética , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/imunologia , Neoplasias/patologia , Radioimunoterapia/efeitos adversos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Dosagem Radioterapêutica , Distribuição Tecidual , Testes de Toxicidade Crônica , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Nucl Med ; 60(12): 1794-1801, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31405921

RESUMO

Radiation dose estimations are key for optimizing therapies. We studied the role of 124I-omburtamab (8H9) given intraventricularly in assessing the distribution and radiation doses before 131I-omburtamab therapy in patients with metastatic leptomeningeal disease and compared it with the estimates from cerebrospinal fluid (CSF) sampling. Methods: Patients with histologically proven malignancy and metastatic disease to the central nervous system or leptomeninges who met eligibility criteria for 131I-omburtamab therapy underwent immuno-PET imaging with 124I-8H9 followed by 131I-8H9 antibody therapy. Patients were imaged with approximately 74 MBq of intraventricular 124I-omburtamab via an Ommaya reservoir. Whole-body PET images were acquired at approximately 4, 24, and 48 h after administration and analyzed for dosimetry calculations. Peripheral blood and CSF samples were obtained at multiple time points for dosimetry estimation. Results: Forty-two patients with complete dosimetry and therapy data were analyzed. 124I-omburtamab PET-based radiation dosimetry estimations revealed mean (±SD) absorbed dose to the CSF for 131I-8H9 of 0.62 ± 0.40 cGy/MBq, compared with 2.22 ± 2.19 cGy/MBq based on 124I-omburtamab CSF samples and 1.53 ± 1.37 cGy/MBq based on 131I-omburtamab CSF samples. The mean absorbed dose to the blood was 0.051 ± 0.11 cGy/MBq for 124I-omburtamab samples and 0.07 ± 0.04 cGy/MBq for 131I-omburtamab samples. The effective whole-body radiation dose for 124I-omburtamab was 0.49 ± 0.27 mSv/MBq. The mean whole-body clearance half-time was 44.98 ± 16.29 h. Conclusion: PET imaging with 124I-omburtamab antibody administered intraventricularly allows for noninvasive estimation of dose to CSF and normal organs. High CSF-to-blood absorbed-dose ratios are noted, allowing for an improved therapeutic index to leptomeningeal disease and reduced systemic doses. PET imaging-based estimates were less variable and more reliable than CSF sample-based dosimetry.


Assuntos
Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/farmacocinética , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/farmacocinética , Neoplasias Meníngeas/metabolismo , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Metástase Neoplásica , Radiometria , Distribuição Tecidual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA