RESUMO
Preemptive pharmacogenetic testing has the potential to improve drug dosing by providing point-of-care patient genotype information. Nonetheless, its implementation in the Chinese population is limited by the lack of population-wide data. In this study, secondary analysis of exome sequencing data was conducted to study pharmacogenomics in 1116 Hong Kong Chinese. We aimed to identify the spectrum of actionable pharmacogenetic variants and rare, predicted deleterious variants that are potentially actionable in Hong Kong Chinese, and to estimate the proportion of dispensed drugs that may potentially benefit from genotype-guided prescription. The projected preemptive pharmacogenetic testing prescription impact was evaluated based on the patient prescription data of the public healthcare system in 2019, serving 7.5 million people. Twenty-nine actionable pharmacogenetic variants/ alleles were identified in our cohort. Nearly all (99.6%) subjects carried at least one actionable pharmacogenetic variant, whereas 93.5% of subjects harbored at least one rare deleterious pharmacogenetic variant. Based on the prescription data in 2019, 13.4% of the Hong Kong population was prescribed with drugs with pharmacogenetic clinical practice guideline recommendations. The total expenditure on actionable drugs was 33,520,000 USD, and it was estimated that 8,219,000 USD (24.5%) worth of drugs were prescribed to patients with an implicated actionable phenotype. Secondary use of exome sequencing data for pharmacogenetic analysis is feasible, and preemptive pharmacogenetic testing has the potential to support prescription decisions in the Hong Kong Chinese population.
Assuntos
Sequenciamento do Exoma/métodos , Farmacogenética/métodos , Variantes Farmacogenômicos/genética , Prescrições/estatística & dados numéricos , Alelos , Povo Asiático/genética , Estudos de Coortes , Frequência do Gene , Genótipo , Hong Kong , Humanos , Farmacogenética/estatística & dados numéricos , Testes Farmacogenômicos/métodos , Testes Farmacogenômicos/estatística & dados numéricos , Fenótipo , Reprodutibilidade dos TestesRESUMO
BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Convulsões/epidemiologia , Convulsões/genética , Síndrome , Sequenciamento do ExomaRESUMO
BACKGROUND: The global development and advancement of genomic medicine in the recent decade has accelerated the implementation of personalized medicine (PM) and pharmacogenomics (PGx) into clinical practice, while catalyzing the emergence of genetic testing (GT) with relevant ethical, legal, and social implications (ELSI). RESULTS: The perception of university undergraduates with regards to PM and PGx was investigated, and 80% of undergraduates valued PM as a promising healthcare model with 66% indicating awareness of personal genome testing companies. When asked about the curriculum design towards PM and PGx, compared to undergraduates in non-medically related curriculum, those studying in medically related curriculum had an adjusted 7.2 odds of perceiving that their curriculum was well-designed for learning PGx (95% CI 3.6-14.6) and a 3.7 odds of perceiving that PGx was important in their study (95% CI 2.0-6.8). Despite this, only 16% of medically related curriculum undergraduates would consider embarking on future education on PM. When asked about their perceptions on GT, 60% rated their genetic knowledge as "School Biology" level or below while 76% would consider undergoing a genetic test. As for ELSI, 75% of undergraduates perceived that they were aware of ethical issues of GT in general, particularly on "Patient Privacy" (80%) and "Data Confidentiality" (68%). Undergraduates were also asked about their perceived reaction upon receiving an unfavorable result from GT, and over half of the participants perceived that they would feel "helpless or pessimistic" (56%), "inadequate or different" (59%), and "disadvantaged at job seeking" (59%), while older undergraduates had an adjusted 2.0 odds of holding the latter opinion (95% CI 1.1-3.5), compared to younger undergraduates. CONCLUSION: Hong Kong undergraduates showed a high awareness of PM but insufficient genetic knowledge and low interest in pursuing a career towards PM. They were generally aware of ethical issues of GT and especially concerned about patient privacy and data confidentiality. There was a predominance of pessimistic views towards unfavorable testing results. This study calls for the attention to evaluate education and talent development on genomics, and update existing legal frameworks on genetic testing in Hong Kong.
Assuntos
Testes Genéticos/tendências , Farmacogenética/tendências , Medicina de Precisão/psicologia , Adulto , Atitude , Educação de Graduação em Medicina , Feminino , Medicina Genômica , Hong Kong/epidemiologia , Humanos , Masculino , Percepção , Universidades/tendências , Adulto JovemRESUMO
CTNNB1-related disorder is an autosomal dominant neurodevelopmental disorder characterized by a variable degree of cognitive impairment, microcephaly, truncal hypotonia, peripheral spasticity, visual defects, and dysmorphic features. In this case series, we report the clinical and molecular findings of nine Chinese patients affected by CTNNB1-related disorders. The facial features of these affected individuals appear to resemble what had been previously described, with thin upper lip (77.8%) and hypoplastic alae nasi (77.8%) being the most common. Frequently reported clinical characteristics in our cohort include developmental delay (100%), peripheral spasticity (88.9%), truncal hypotonia (66.7%), microcephaly (66.7%), and dystonia (44.4%). While various eye manifestations were reported, two affected individuals (22.2%) in our cohort had familial exudative vitreoretinopathy. One of the affected individuals had craniosynostosis, a feature not reported in the literature before. To our knowledge, this is the first reported Chinese case series of CTNNB1-related neurodevelopmental disorders. Further studies are required to look into whether ethnic differences play a role in phenotypic variations.
Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , China/epidemiologia , Vitreorretinopatias Exsudativas Familiares , Humanos , Microcefalia/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , beta CateninaRESUMO
The use of exome and genome sequencing has increased rapidly nowadays. After primary analysis, further analysis can be performed to identify secondary findings that offer medical benefit for patient care. Multiple studies have been performed to evaluate secondary findings in different ethnicities. However, relevant data are limited in Chinese. Here, with the use of a cohort consisted of 1116 Hong Kong Chinese exome sequencing data, we evaluated the secondary findings in the 59 genes recommended by the American College of Medical Genetics and Genomics. Fifteen unique pathogenic or likely pathogenic variants in 17 individuals were identified, representing a frequency of 1.52% in our cohort. Although 20 individuals harboured pathogenic or likely pathogenic variants in recessive conditions, none carried bi-allelic mutations in the same gene. Our finding was in accordance with the estimation from the American College of Medical Genetics and Genomics that about 1% individuals harbour secondary findings.
Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Testes Genéticos , Genômica , Adolescente , Adulto , Alelos , Criança , China/epidemiologia , Exoma , Feminino , Variação Genética/genética , Genoma Humano/genética , Hong Kong/epidemiologia , Humanos , Achados Incidentais , Masculino , Pessoa de Meia-Idade , Mutação/genética , Adulto JovemRESUMO
Schuurs-Hoeijmakers syndrome (SHS) is a rare syndrome involving a de novo variant in the PACS1 gene on chromosome 11q13. There are 36 individuals published in the literature so far, mostly diagnosed postnatally (34/36) after recognizing the typical facial features co-occurring with developmental delay, intellectual disability, and multiple malformations. Herein, we present one prenatal and 15 postnatal cases with the recurrent heterozygous pathogenic variant NM_018026.3:c.607C>T p.(Arg203Trp) in the PACS1 gene detected by exome sequencing. These 16 cases were identified by mining Centogene and the Hong Kong clinical genetic service databases. Collectively, the 49 postnatally diagnosed individuals present with typical facial features and developmental delay, while the three prenatally diagnosed individuals present with multiple congenital anomalies. In the current study, the use of exome sequencing as an unbiased diagnostic tool aided the diagnosis of SHS (pre- and postnatally). The identification of additional cases with SHS add to the current understanding of the clinical phenotype associated with pathogenic PACS1 variants. Databases combining clinical and genetic information are helpful for the study of rare diseases.
Assuntos
Anormalidades Múltiplas/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Fenótipo , Diagnóstico Pré-Natal/métodos , Sequenciamento do ExomaRESUMO
Mowat-Wilson syndrome (MWS) is characterized clinically by a distinctive facial gestalt, intellectual disability, microcephaly, epilepsy, and nonobligatory congenital malformations such as Hirschsprung disease, urogenital anomalies, congenital heart disease, eye malformations. This article summarized the clinical features and molecular findings of 15 Chinese MWS patients. The results revealed a higher incidence of congenital heart disease in Chinese MWS patients compared to that previously reported in Caucasian cohorts, while the incidence of Hirschsprung disease and genitourinary malformation appeared to be lower. This suggests possible ethnicity-related modifying effects in the MWS phenotype.
Assuntos
Cardiopatias Congênitas/genética , Doença de Hirschsprung/genética , Deficiência Intelectual/genética , Microcefalia/genética , Adolescente , Adulto , Criança , Pré-Escolar , China/epidemiologia , Fácies , Feminino , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Doença de Hirschsprung/complicações , Doença de Hirschsprung/patologia , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Microcefalia/complicações , Microcefalia/patologia , Proteínas Repressoras , Neoplasias Urogenitais/complicações , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/patologia , Adulto JovemRESUMO
BACKGROUND: Chromosomal microarray (CMA) has been shown to be cost-effective over karyotyping in invasive prenatal diagnosis for pregnancies with fetal ultrasound anomalies. Yet, information regarding preceding and subsequent tests must be considered as a whole before the true cost-effectiveness can emerge. Currently in Hong Kong, karyotyping is offered free as the standard prenatal test while genome-wide array comparative genome hybridization (aCGH), a form of CMA, is self-financed. A new algorithm was proposed to use aCGH following quantitative fluorescent polymerase chain reaction (QF-PCR) as primary test instead of karyotyping. This study aims to evaluate the cost-effectiveness of the proposed algorithm versus the current algorithm for prenatal diagnosis in Hong Kong. METHODS: Between November 2014 and February 2016, 129 pregnant women who required invasive prenatal diagnosis at two public hospitals in Hong Kong were prospectively recruited. The proposed algorithm was performed for all participants in this demonstration study. For the cost-effectiveness analysis, cost and outcome (diagnostic rate) data were compared with that of a hypothetical scenario representing the current algorithm. Further analysis was performed to incorporate women's willingness-to-pay for the aCGH test. Impact of government subsidies on the aCGH test was explored as a sensitivity analysis. RESULTS: The proposed algorithm dominated the current algorithm for prenatal diagnosis. Both algorithms were equally effective but the proposed algorithm was significantly cheaper (p ≤ 0.05). Taking into account women's willingness-to-pay for an aCGH test, the proposed algorithm was more effective and less costly than the current algorithm. When the government subsidy reaches 100%, the maximum number of diagnoses could be made. CONCLUSION: By switching to the proposed algorithm, cost saving can be achieved whilst maximizing the diagnostic rate for invasive prenatal diagnosis. It is recommended to implement aCGH as a primary test following QF-PCR to replace the majority of karyotyping for prenatal diagnosis in Hong Kong.
Assuntos
Hibridização Genômica Comparativa/economia , Análise Custo-Benefício , Cariotipagem/economia , Diagnóstico Pré-Natal/métodos , Algoritmos , Aneuploidia , Feminino , Hong Kong , Humanos , Reação em Cadeia da Polimerase , Gravidez , Saúde PúblicaRESUMO
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare condition. The diagnosis could be challenging due to its rarity and non-specific presenting symptoms. However, early diagnosis and appropriate management help in preserving patients' function and quality of life. Herein, we report the diagnostic journeys and clinical courses of 8 patients with FOP in Hong Kong and illustrate the challenges involved.
RESUMO
Bronchiectasis is the abnormal dilation of the airway which may be caused by various etiologies in children. Beyond the more recognized cause of bacterial and viral infections and primary immunodeficiencies, other genetic conditions such as cystic fibrosis and primary ciliary dyskinesia (PCD) can also contribute to the disease. Currently, there is still debate on whether genome sequencing (GS) or exome sequencing reanalysis (rES) would be beneficial if the initial targeted testing results returned negative. This study aims to provide a back-to-back comparison between rES and GS to explore the best integrated approach for the functional and genetics evaluation for patients referred for assessment of bronchiectasis. In phase 1, an initial 60 patients were analyzed by exome sequencing (ES) with one additional individual recruited later as an affected sibling for ES. Functional evaluation of the nasal nitric oxide test, transmission electron microscopy, and high-speed video microscopy were also conducted when possible. In phase 2, GS was performed on 30 selected cases with trio samples available. To provide a back-to-back comparison, two teams of genome analysts were alternatively allocated to GS or rES and were blinded to each other's analysis. The time for bioinformatics, analysis, and diagnostic utility was recorded for evaluation. ES revealed five positive diagnoses (5/60, 8.3%) in phase 1, and four additional diagnoses were made by rES and GS (4/30, 13%) during phase 2. Subsequently, one additional positive diagnosis was identified in a sibling by ES and an overall diagnostic yield of 10/61 (16.4%) was reached. Among those patients with a clinical suspicion of PCD (n = 31/61), the diagnostic yield was 26% (n = 8/31). While GS did not increase the diagnostic yield, we showed that a variant of uncertain significance could only be detected by GS due to improved coverage over ES and hence is a potential benefit for GS in the future. We show that genetic testing is an essential component for the diagnosis of early-onset bronchiectasis and is most effective when used in combination with functional tools such as TEM or HSVM. Our comparison of rES vs. GS suggests that rES and GS are comparable in clinical diagnosis.
RESUMO
Traditional carrier screening has been utilized for the detection of carriers of genetic disorders. Since a comprehensive assessment of the carrier frequencies of recessive conditions in the Southern Chinese population is not yet available, we performed a secondary analysis on the spectrum and carrier status for 315 genes causing autosomal recessive disorders in 1543 Southern Chinese individuals with next-generation sequencing data, 1116 with exome sequencing and 427 with genome sequencing data. Our data revealed that 1 in 2 people (47.8% of the population) was a carrier for one or more recessive conditions, and 1 in 12 individuals (8.30% of the population) was a carrier for treatable inherited conditions. In alignment with current American College of Obstetricians and Gynecologists (ACOG) pan-ethnic carrier recommendations, 1 in 26 individuals were identified as carriers of cystic fibrosis, thalassemia, and spinal muscular atrophy in the Southern Chinese population. When the >1% expanded carrier screening rate recommendation by ACOG was used, 11 diseases were found to meet the criteria in the Southern Chinese population. Approximately 1 in 3 individuals (35.5% of the population) were carriers of these 11 conditions. If the 1 in 200 carrier frequency threshold is used, and additional seven genes would meet the criteria, and 2 in 5 individuals (38.7% of the population) would be detected as a carrier. This study provides a comprehensive catalogue of the carrier spectrum and frequency in the Southern Chinese population and can serve as a reference for careful evaluation of the conditions to be included in expanded carrier screening for Southern Chinese people.
RESUMO
PURPOSE: The aim was to evaluate knowledge, attitudes, and clinical practice concerning medical genetics, genetic testing, and counseling among primary care physicians (PCPs) in Hong Kong and Shenzhen, China. METHODS: The University of Hong Kong (HKU), HKU-Shenzhen Hospital, and Shenzhen Health Capacity Building and Continuing Education Center invited PCPs from Hong Kong and Shenzhen to participate in an online survey. RESULTS: The survey was completed by 151 PCPs and 258 PCPs from Hong Kong and Shenzhen, respectively. The majority agreed it was important to keep current with genetics (91%) and that personalized medicine was the future of healthcare (86%), yet only 10% reported that they had postgraduate training in genomic medicine. Seventeen percent of Hong Kong and 40% of Shenzhen's PCPs encountered genetic-related cases in the past 6 months, and they identified insufficient knowledge, few training opportunities, and self-rated low confidence in their skillsets as main barriers. CONCLUSIONS: Our survey shows that Hong Kong and Shenzhen's PCPs are not yet fully utilizing potential benefits of genomic medicine in their clinical practice, which could be addressed with a combination of easily accessible educational resources, clear referral pathways and guidelines on genetic diseases, and cross-specialty collaboration between healthcare systems and professional bodies.
Assuntos
Aconselhamento Genético/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Adulto , Educação Médica/estatística & dados numéricos , Feminino , Pessoal de Saúde/psicologia , Pessoal de Saúde/estatística & dados numéricos , Hong Kong , Humanos , Masculino , Pessoa de Meia-Idade , Atenção Primária à Saúde/estatística & dados numéricos , Estudantes de Medicina/psicologia , Estudantes de Medicina/estatística & dados numéricosRESUMO
BACKGROUND: Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. RESULTS: We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. CONCLUSIONS: A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.
Assuntos
Distúrbios Distônicos , Transtornos dos Movimentos , Criança , Distúrbios Distônicos/genética , Exoma/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Humanos , Transtornos dos Movimentos/genética , Mutação/genética , Proteínas , ATPase Trocadora de Sódio-Potássio/genética , Espastina , Sequenciamento do ExomaRESUMO
Balanced chromosomal abnormalities (BCAs) are changes in the localization or orientation of a chromosomal segment without visible gain or loss of genetic material. BCAs occur at a frequency of 1 in 500 newborns and are associated with an increased risk of multiple congenital anomalies and/or neurodevelopmental disorders, especially if it is a de novo mutation. In this pilot project, we used short read genome sequencing (GS) to retrospectively re-sequence ten prenatal subjects with de novo BCAs and compared the performance of GS with the original karyotyping. GS characterized all BCAs found by conventional karyotyping with the added benefit of precise sub-band delineation. By identifying BCA breakpoints at the nucleotide level using GS, we found disruption of OMIM genes in three cases and identified cryptic gain/loss at the breakpoints in two cases. Of these five cases, four cases reached a definitive genetic diagnosis while the other one case had a BCA interpreted as unknown clinical significance. The additional information gained from GS can change the interpretation of the BCAs and has the potential to improve the genetic counseling and perinatal management by providing a more specific genetic diagnosis. This demonstrates the added clinical utility of using GS for the diagnosis of BCAs.
RESUMO
Primary coenzyme Q10 deficiency-7 (COQ10D7) is a rare mitochondrial disease caused by biallelic mutations in COQ4. Here we report the largest cohort of COQ10D7 to date, with 11 southern Chinese patients confirmed with biallelic COQ4 mutations. Five of them have the classical neonatal-onset encephalo-cardiomyopathy, while the others have infantile onset with more heterogeneous clinical presentations. We also identify a founder mutation COQ4 (NM_016035.5): c.370G>A, p.(Gly124Ser) for COQ10D7, suggesting a higher chance of occurrence in the southern Chinese. This study helps improve understanding of the clinical spectrum of this disorder.