Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12239, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507475

RESUMO

Krüppel-like factor 9 (Klf9) is a ubiquitously expressed transcription factor that is a feedforward regulator of multiple stress-responsive and endocrine signaling pathways. We previously described how loss of Klf9 function affects the transcriptome of zebrafish larvae sampled at a single time point 5 days post-fertilization (dpf). However, klf9 expression oscillates diurnally, and the sampled time point corresponded to its expression nadir. To determine if the transcriptomic effects of the klf9-/- mutation vary with time of day, we performed bulk RNA-seq on 5 dpf zebrafish embryos sampled at three timepoints encompassing the predawn peak and midmorning nadir of klf9 expression. We found that while the major effects of the klf9-/- mutation that we reported previously are robust to time of day, the mutation has additional effects that manifest only at the predawn time point. We used a published single-cell atlas of zebrafish development to associate the effects of the klf9-/- mutation with different cell types and found that the mutation increased mRNA associated with digestive organs (liver, pancreas, and intestine) and decreased mRNA associated with differentiating neurons and blood. Measurements from confocally-imaged larvae suggest that overrepresentation of liver mRNA in klf9-/- mutants is due to development of enlarged livers.


Assuntos
Fatores de Transcrição Kruppel-Like , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , RNA Mensageiro/metabolismo
2.
Genetics ; 213(3): 923-939, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506335

RESUMO

Vasa homologs are ATP-dependent DEAD-box helicases, multipotency factors, and critical components that specify and protect the germline. They regulate translation, amplify piwi-interacting RNAs (piRNAs), and act as RNA solvents; however, the limited availability of mutagenesis-derived alleles and their wide range of phenotypes have complicated their analysis. Now, with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), these limitations can be mitigated to determine why protein domains have been lost or retained throughout evolution. Here, we define the functional motifs of GLH-1/Vasa in Caenorhabditis elegans using 28 endogenous, mutant alleles. We show that GLH-1's helicase activity is required to retain its association with P granules. GLH-1 remains in P granules when changes are made outside of the helicase and flanking domains, but fertility is still compromised. Removal of the glycine-rich repeats from GLH proteins progressively diminishes P-granule wetting-like interactions at the nuclear periphery. Mass spectrometry of GLH-1-associated proteins implies conservation of a transient piRNA-amplifying complex, and reveals a novel affinity between GLH-1 and three structurally conserved PCI (26S Proteasome Lid, COP9, and eIF3) complexes or "zomes," along with a reciprocal aversion for assembled ribosomes and the 26S proteasome. These results suggest that P granules compartmentalize the cytoplasm to exclude large protein assemblies, effectively shielding associated transcripts from translation and associated proteins from turnover. Within germ granules, Vasa homologs may act as solvents, ensuring mRNA accessibility by small RNA surveillance and amplification pathways, and facilitating mRNA export through germ granules to initiate translation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , RNA Helicases DEAD-box/metabolismo , Células Germinativas/metabolismo , Animais , Complexo do Signalossomo COP9/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Células Germinativas/citologia , Glicina/genética , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA